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Piezo1 and Piezo2 Are Essential
Components of Distinct Mechanically
Activated Cation Channels
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The authors used the mouse neuroblastoma cell line Neuro2A (N2A), which
expresses endogenous rapidly-adapting mechanosensitive channels. Two
protocols were used to evoke mechanosensitive currents — membrane touch

and membrane stretch.



Fig. 1. MA currents in N2A cells. (A) Representative traces of MA inward
currents expressed in N2A cells. Cells were subjected to a series of mechanical steps
of 1-um movements of a stimulation pipette (inset illustration, arrow) in the
whole-cell patch configuration at a holding potential of —80 mV. (B) Average
current-voltage relationships of MA currents in N2A cells (7 = 11 cells). (Inset)
Representative MA currents evoked at holding potentials ranging from —80 to +40 mV
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(applied 0.7 s before the mechanical step). (C) Single-channel currents (cell -80
attached patch configuration) induced by means of negative pressure with a
pipette (inset illustration, arrow) at holding potentials ranging from —80 mV to 100 pA
+80 mV in a N2A cell. (D) Average current-voltage relationships of stretch-
activated single channels in N2A cells (n = 4 cells, mean £ SEM). Single-
channel conductance was calculated from the slope of the linear regression c 7 D
line of each cell, giving y = 22.9 + 1.4 pS (mean + SEM). Single-channel > — 25
amplitude was determined as the amplitude difference in Gaussian fits of ye 15
full-trace histograms. (E) Representative currents (averaged traces) induced LE 8omy
by means of negative pipette pressure (0 to —60 mmHg, A 10 mmHg) in a N2A RS Aomy - (mV)
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* To generate a list of candidate MA ion channels in
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Mm38A encodes a protein required for the
channels activated by pressure, we named

from the Greek "nlson” (piesi), meaning




* Many animal, plant,
and other eukaryotic

species contain a
single Piezo.
Vertebrates have two
members, Piezol

(Fam38A) and Piezo2
(Fam38B)
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Piezol induces MA currents in various cell types

We cloned full-length Piezol from N2A cells into
the pIRES2—enhanced green fluorescent protein
(EGFP) vector. We recorded MA currents from GFP-
positive cells in the whole cell mode 12 to 48 hours
after transfection. Piezol but not mock-transfected
cells showed large MA currents in N2A, human

embryonic kidney (HEK) 293 T

The threshold of activation and the time constant
for inactivation of MA currents elicited in Piezol-
overexpressing cells was similar in all three cell

lines tested
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* We characterized the ionic selectivity of MA

currents in cells overexpressing Piezol.
Substituting the nonpermeant cation NMDG
(N -methyl-d-glucamine) in the extracellular
bathing solution suppressed inward MA
currents, demonstrating that this channel

conducts cations
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We further examined ionic selectivity by recording with CsCl-only internal solutions and various cations in the
bath. Na+, K+, Ca2+ and Mg2+ all permeated, with a slight preference for Ca2+. Moreover, 30 uM of ruthenium
red and gadolinium, which are known blockers of many cationic MA current, blocked 74.6 T 2.5% (n = 6 cells) and

84.3T 3.8% (n =5 cells) of Piezol induced MA current, respectively (fig. S4, | to K).



MA currents in cells overexpressing Piezo?2.
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Piezol is detected at the plasma membrane

A
Overlay

Piezo1

Surface TRPA1 Piezo1 Overlay Total TRPA1

* In cells transfected with Piezol and TRPA1—an ion channel known to be expressed at
the plasma membrane—we observed some overlap of Piezol staining with that of
TRPA1 on the cell surface, although most Piezol and TRPAl1was present inside the
cell (fig. S6B). Thus, Piezol protein can be localized at or near the plasma membrane



Requirement of Piezo?2 for rapidly adapting
MA currents in DRG neurons
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heterogeneous population of neurons and glial SR

cells of the DRGs, we performed in situ
hybridization on adult mouse DRG sections (Fig.

6A)
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Requirement of Piezo?2 for rapidly adapting
MA currents in DRG neurons

We recorded whole-cell MA currents from DRG
neurons transfected with GFP and either scrambled
or Piezo2 siRNA (n = 101 neurons for scrambled and
n = 109 neurons for Piezo2 siRNA). We grouped the
recorded MA currents according to their inactivation
kinetics (Fig. 6B). We defined four different classes of
neurons on the basis of t inac distribution in

scrambled siRNA transfected cells
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Requirement of Piezo?2 for rapidly adapting
MA currents in DRG neurons

* The proportion of neurons expressing MA currents
with t inact < 10ms was specifically and significantly
reduced in neurons transfected with Piezo2 siRNA as
compared with that of neurons transfected with

scrambled siRNA (Fig. 6C).

e 28.7% of scrambled siRNA-transfected neurons had
tinac < 10 ms, compared with 7.3% in Piezo2 siRNA-

transfected neurons (Fig. 6D)
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MmPiezol reconstitution in lipid bilayers

Vapp
to assess whether Piezo proteins were sufficient DIB *ss*T S 40pA
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J_; 0/0 v 2 100 ms
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purified MmPiezol proteins into lipid bilayers in w WL 'I |
- T V;pp 100 ms
two distinct configurations: droplet interface lipid A f —_—

bilayers (DIBs) assembled from two monolayers

(Fig. 5a—e and |—q) and proteoliposomes (Fig. 5f—
h). In the first configuration, MmPiezol was
reconstituted into asymmetric bilayers that mimic
the cellular environment: the extracellular-facing
lipid monolayer is predominantly neutral whereas
the intracellular-facing leaflet is negatively
charged. In contrast, the lipid composition of the

bilayer in the second configuration is uniform.




MmPiezol reconstitution in lipid bilayers

* In the DIBs setting, representative segments
from a 6-min recording obtained at -100mV
show brief, discrete channel openings (Fig.

5a, b) blocked by addition of 50 uM
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Here we determine the cryo-electron microscopy
structure of the full-length (2,547 amino acids) mouse

Piezol (Piezol) at a resolution of 4.8 A" .



Piezol forms a trimeric propeller-like structure (about 900 kilodalton), with the
extracellular domains resembling three distal blades and a central cap.

As a further confirmation, Flag-tagged Piezol displayed a major band at about
900 kDa on native gels (Fig. 1c). Thus, our data suggest that the major oligomeric

state of the purified Piezo1l is trimeric.
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The density map revealed that Piezol formed a three-blade, propeller-
shaped architecture, with distinct regions resembling the typical structural
components of a propeller, including three blades and a central cap. Viewed
from the top, the diameter and the axial height of the structure are 200 A
and 155 A’ , respectively (Fig. 2d).
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A single central cap sits above the surface of the transmembrane core
with a gap in between (Fig. 2e). Furthermore, a tightly packed region,
likely to be a compact soluble domain, is located on the opposite side
of the cap, right below the transmembrane region (Fig. 2e). The

anchor may contain the highly conserved PF(X2)E(X6)W motif found in

Piezos in all species.
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The Cap is constitued by residues from 2210 to 2457 (termed the C-terminal
extracellular domain, CED) that form a large extracellular loop followed by the last

transmembrane segment at the C terminus.

J S

CRISTAL STRUCTURE OF CED:

The amino (N) and C termini of the CED are on the same
side and close to each other (Fig. 2g), consistent with
the topological prediction that the CED is located
between the last two transmembrane segments in the
C-terminal region of Piezol.

In the 3D structure, the CAP is formed by a CED trimer,
further supporting the conclusion that the full-length

Piezol forms a homotrimer.
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Piezo1(A2419)-Flag-IRES-GFP Piezo1-Cterm-Flag-IRES-GFP

Anti-Flag GFP Merged Anti-Flag GFP Merged

To further confirm the topological location of the CED and the C terminus of Piezol, we

Live labelling
Live labelling

Permeabilized
Permeabilized

performed immunolabelling of live HEK293T cells expressing Piezol with a Flag tag fused
either in a flexible loop of the CED (after A2419) or at the C terminus of Piezol. Using
confocal microscopy, we found that the Flag tag could be labelled on the plasma membrane
of live cells only when inserted in the CED and not at the C terminus (Fig. 2h). These data
demonstrate that the CED is an extracellular domain, whereas the C terminus is

intracellular, consistent with a recent report



Piezo channels are predicted to possess an unusually large number of TM regions, ranging
from 10 to 40. Zhao et al. recently produced high-resolution structures of mouse Piezol

(mPiezol), revealing a unique 38-TM topology in each subunit (Fig. 2a, b).
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The two TM regions (TM37 and TM38) closest to the center of the protein are designated
as the inner helix (IH) and outer helix (OH), respectively, and enclose the transmembrane

pore of the central pore module.
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The other 36 TM regions (TM1-36) form a curved blade-like structure with nine repetitive

folds containing 4 TM regions each, named transmembrane helical units (THUs).
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TM25 and TM29. Both identifiable structural
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A hairpin structure, referred to as the anchor, connects the OH-IH pair to the C-terminal
domain (CTD) plane. The anchor is made up of three helices (al, a2, and a3). Helices al

and a2 were found to organize into an inverted V-shaped structure, which maintains the

integrity of the ion-conducting pore.

A few mutations in Piezol at locations including KKKK (2182-K2185), T2143, T2142 (T2127
in human Piezol), R2514, E2523, and E2522, which are located in a3 in the anchor, have

been reported to cause severe disease
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On the intracellular surface, Piezol contains three beamlike structures 90 nm in length that
are organized at a 30° angle relative to the membrane plane. Residues H1300-51362 form
the beam structure. The large intracellular THU7-8 loop might provide the beam with the
structural basis for mechanical transmission. Functionally, the three long intracellular
beams not only support the whole TM skeleton but also physically bridge the distal THUs to
the central ion-conducting pore. When residues 1280 to 1360 (which form this beam

structure) were deleted, the resulting mutant protein was absent, suggesting the structural

importance of the beam
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The centre of the Piezol channel within the membrane consists of six transmembrane
helices in a triangular arrangement. Three IHs (1 IH/subunit), are located at the innermost
position and seem to line a central pore. Three OHs (1 OH/subunit), extended from the N

termini of the CEDs, further enclose the three IHs.

Negative Positive




The continuous central channel consists of three parts, an EV within the cap region, a
transmembrane vestibule (MV) within the membrane, and an intracellular vestibule (IV)
underneath the membrane. Importantly, DEEED (2393-2397), a patch of negatively charged
residues residing in the opening of the extracellular “cap” structure is required to ensure

efficient ion conduction and determine the selection of cations over anions.

Additionally, two critical acidic
residues, E2495 and E2496, located
at the CTD-constituted IV, may be

responsible for divalent calcium ion

selectivity, unitary conductance and

>},1. ,

pore blockage. . ‘,L ~ :_\
IH-CTDnke? 5,; (

@ &
L.,,»\v 7“”

Negative Positive



ARTICLE

https://doi.org/10.1038/s41586-019-1505-8

Structure and mechanogating of the
mammalian tactile channel PIEZO2
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Piezo2 channel is very similar to that of Piezol in that it forms a three-bladed, propeller-
like homotrimeric structure comprising a central ion-conducting pore module and three

peripheral blades with 38 TMs.



MEMBRANE DOME KINETIC MODEL

The arms of PIEZO, composed of trasmembrane helices, are inside the membrane and FORCE the
membrane to curve (suggesting a preferential localization in membrane domains of similar curvature.
The structure of Piezol leads us to propose a membrane dome mechanism for the origins of its
mechanosensitive gating. In this mechanism a dome of membrane, created by Piezo’s shape in its
closed conformation, undergoes relative flattening upon channel opening. This mechanism does not
require the application of a force pressing onto the dome (i.e. a force component normal to the plane

of the membrane): lateral membrane tension alone will favor the flatter (Guo and McKinnon 2017)
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LEVER-LIKE MECHANOTRANSDUCTION MECHANISM

In the mPiezol channel, the curved blades composed of THUs can act as a mechanosensor, while the
beam structure, with the residues LI1342 and LI1345 acting as a pivot, can act as a lever-like
apparatus.

Coupling the distal blades and central pore through the lever-like apparatus converts mechanical force
into a force used for cation conduction. Because the pivot of the lever is positioned closer to the
central pore than to the distal blades, the input force is effectively amplified through the lever-like
apparatus. Additionally, a large conformational change in the distal blades is converted into a

relatively slight opening of the central pore, allowing cation-selective permeation.

8lade ceD , T

,Fz

gIo! Pivot Ihe central pore
D | L11342 and L11345




Department of
Life Sciences
and Systems Biology

UNIVERSITA
DI TORINO

Thank you



	Slide 1: Cellular and Molecular Biophysics 
	Slide 2: Mechano-activated channels: PIEZO
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Piezo1 induces MA currents in various cell types
	Slide 10
	Slide 11
	Slide 12: MA currents in cells overexpressing Piezo2.
	Slide 13: Piezo1 is detected at the plasma membrane
	Slide 14: Requirement of Piezo2 for rapidly adapting MA currents in DRG neurons 
	Slide 15: Requirement of Piezo2 for rapidly adapting MA currents in DRG neurons 
	Slide 16: Requirement of Piezo2 for rapidly adapting MA currents in DRG neurons 
	Slide 17: MmPiezo1 reconstitution in lipid bilayers
	Slide 18: MmPiezo1 reconstitution in lipid bilayers
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

