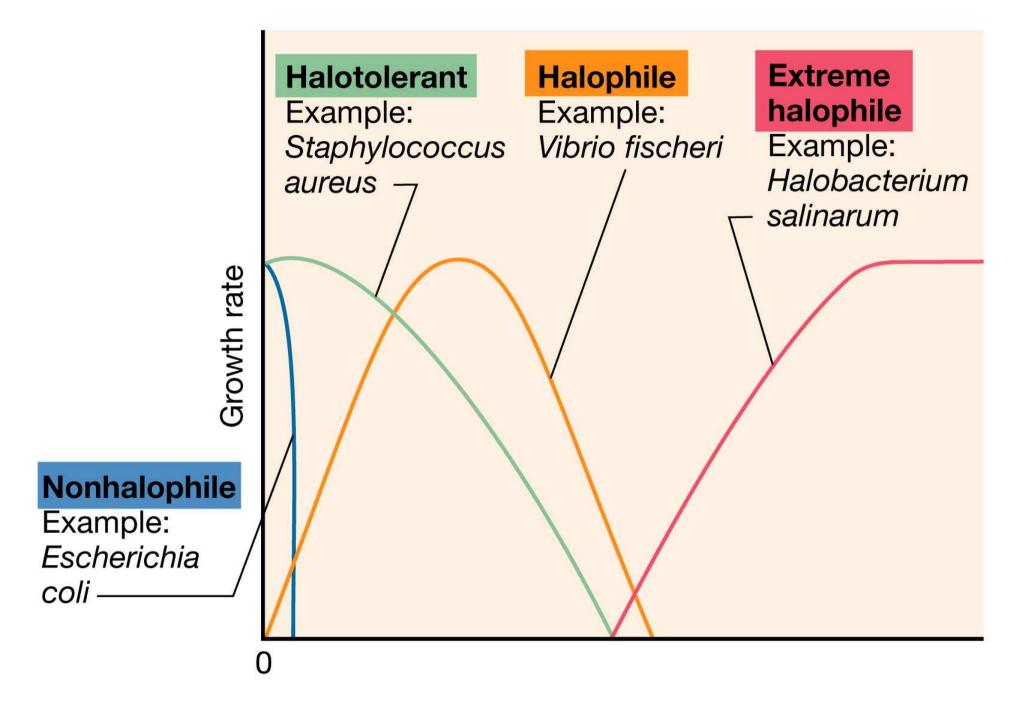

MICROBIOLOGIA GENERALE


Microbial growth 2

pH range of some microorganisms

Microorganisms	Minimum	Maximum	Acid-fastness
Microæccus sp	5.6	8.1	Low acid-fastness
Pseudononas aerugnosa	5.6	8.0	minimum >5.0
Bacillusstearothermophilus	5.2	9.2	
<i>Clostridum</i> sporogenes	5.0	9.0	Intermedate
Bacilluscereus	4.9	9.3	acid-fastness
Vibrio par a naemolytcus	4.8	11.0	minimum 5.0-4.0
Clostridum botulinum	4.5	8.5	
Staphylococcus aureus	4.0	9.8	
Salmonellæp	4,0-4.5	8-9.6	
Escherichiæoli	4,4	9.0	
Lactic Acid Bacteria	3,8Ğ4.4	7.2	High acid-fastness
Acetic Acid Bacteria	2.6	4.3	minimum 4.0
Yeasts	2.3	8.6	
Molds	1.6-1.9	9.3	

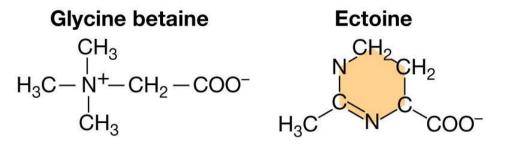
Microbial growth: osmotic effects on growth

Water activity of several substances

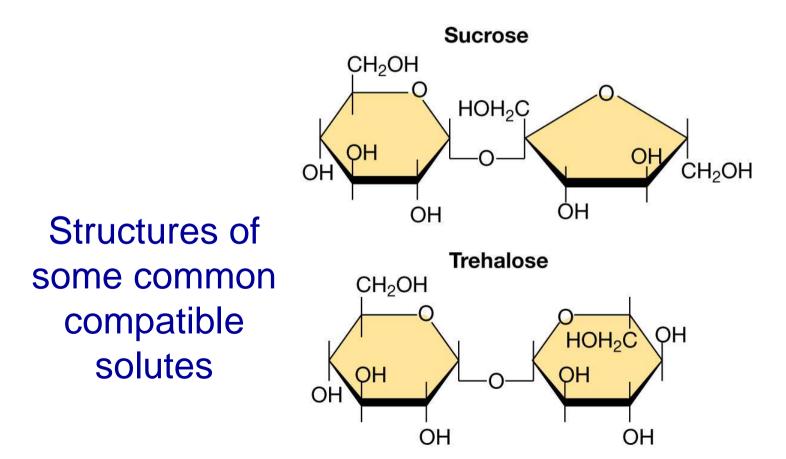
Water activity	Material	Example
(a _w)		
1.000	Pure water	Spirillum
0.995	Human blood	Streptococcus
0.980	Seawater	Vibrio
0.950	Bread	Gram + rods
0.900	Ham	Staphylococcus
0.850	Salami	Saccharomyces rouxii (yeast)
0.800	Fruit cakes, jams	Saccharomyces bailii (fungus)
0.750	Salt lakes, salted fish	Halobacterium
0.700	Cereals, candy, dried fruit	Xerophilic fungi

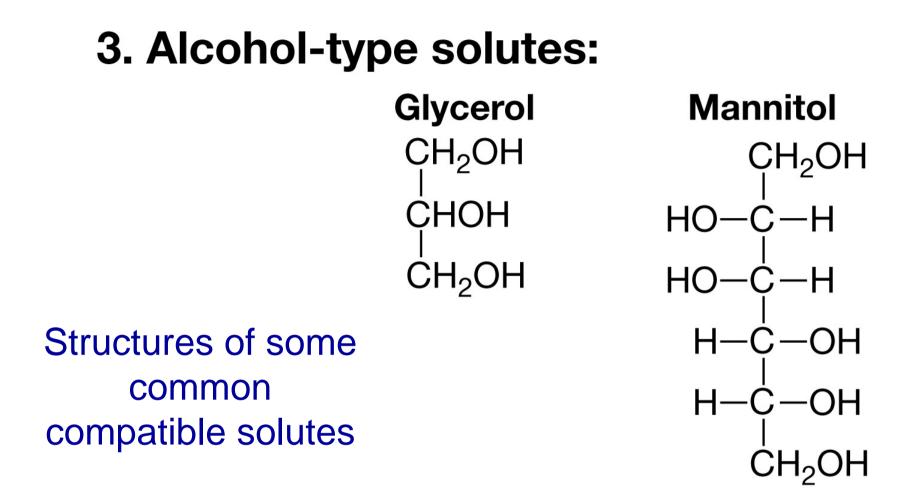
Water activity (a_w) and microbial growth

a _w	Bacteria	Yeasts	Molds
0.98-0.97	Pseudomonas, Clostridium		
0.96-0.95	Salmonella, Enterobacteriaceae, Bacillus, Vibrio, Shigella		
0.94-0.93	Streptococcus, Lactobacillus	Rhodotorula	Rhizopus, Mucor
0.91-0.90	Micrococcus, Lactobacillus	Candida and other pathogens	Cladosporium
0.86	Staphylococcus		
0.80		Saccaromyces	Aspergillus pennicillium
0.75	Halophiles		Aspergillus flavus Aspergillus ochraceus


Water activity and food preservation

Microbial growth can be controlled by lowering the available water content (a_w reduction) of foods by:

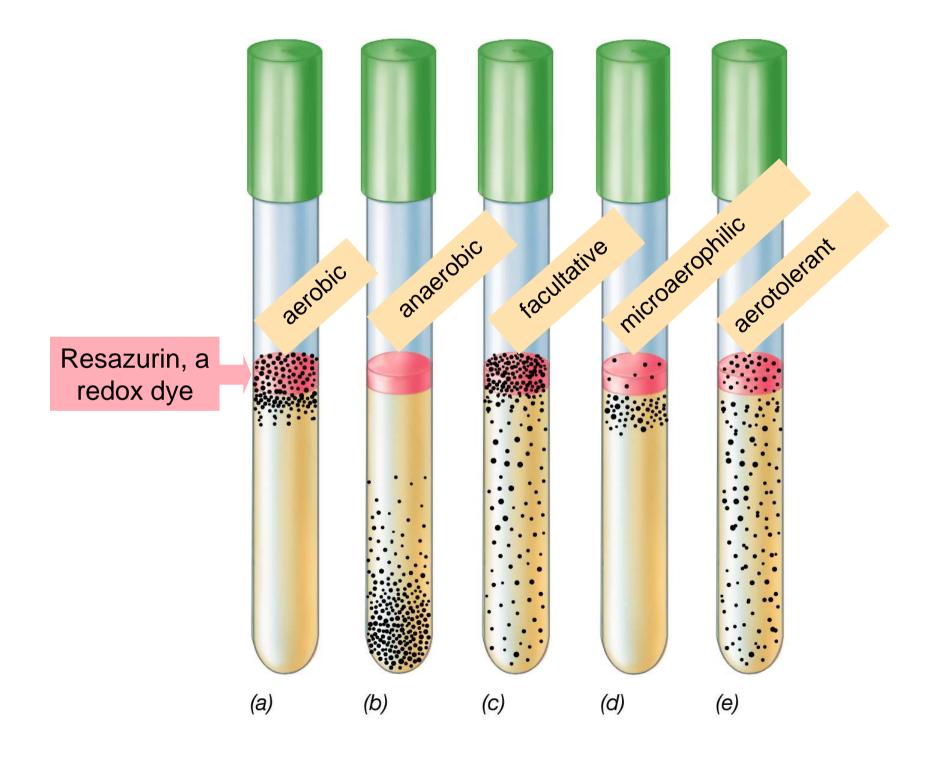

- Freezing
- Drying
- Lyophilization (freeze-drying)
- Addition of high concentrations of solutes such as sugars or salts


Organismo	Principale soluto accumulato	a_w minima per la crescita	
Batteri, non fototrofi	Glicina betaina, prolina (principalmente Gram-positivi), glutamato (principalmente Gram-negativi)	0,97-0,90	
Cianobatteri d'acqua fresca	Saccarosio, trealosio	0,98	
Cianobatteri marini	α-glucosilglicerolo	0,92	
Alghe marine	Mannitolo, vari glicosidi, prolina, dimetilsulfoniopropionato	0,92	
Cianobatteri dei laghi salati	Glicina betaina	0,90-0,75	
Batteri alofili anossigenici fototrofi			
(specie di Hectothiorhodospira/Halorhodospira e Rhodospirillum)	Glicina betaina, ectoina, trealosio	0,90-0,75	
Archea estremamente alofili (per esempio Halobacterium)			
e alcuni Batteri (per esempio Haloanaerobium)	KCI	0,75	
Dunaliella (alga verde alofila)	Glicerolo	0,75	
Lieviti xerofili	Glicerolo	0,83-0,62	
Funghi filamentosi xerofili	Glicerolo	0,72-0,61	

1. Amino acid-type solutes:

2. Carbohydrate-type solutes:

4. Other:


Dimethylsulfoniopropionate:

$$\begin{array}{ccc} CH_3 & O \\ I \\ H_3C - \underset{+}{\overset{|}{S}} - CH_2CH_2C - O^- \end{array}$$

Microbial growth: oxygen and growth

Oxygen classes of microorganisms

Group	Relationship to O ₂	Type of metabolism	Example	
AEROBES				
Obligate	Required	Aerobic respiration	Micrococcus Iuteus	
Facultative	Not required, growth better with O2	Aerobic or Anaerobic respiration, Fermentation	Escherichia coli	
Microaerophilic	Required at low levels	Aerobic respiration	Spirillum volutans	
ANAEROBES				
Aerotolerant	Not required, growth no better with O2	Fermentation	Streptococcus pyogenes	
Obligate	Harmful or lethal	Fermentation or Anaerobic respiration	Clostridium tetani	

Coy Laboratory Products

(b)

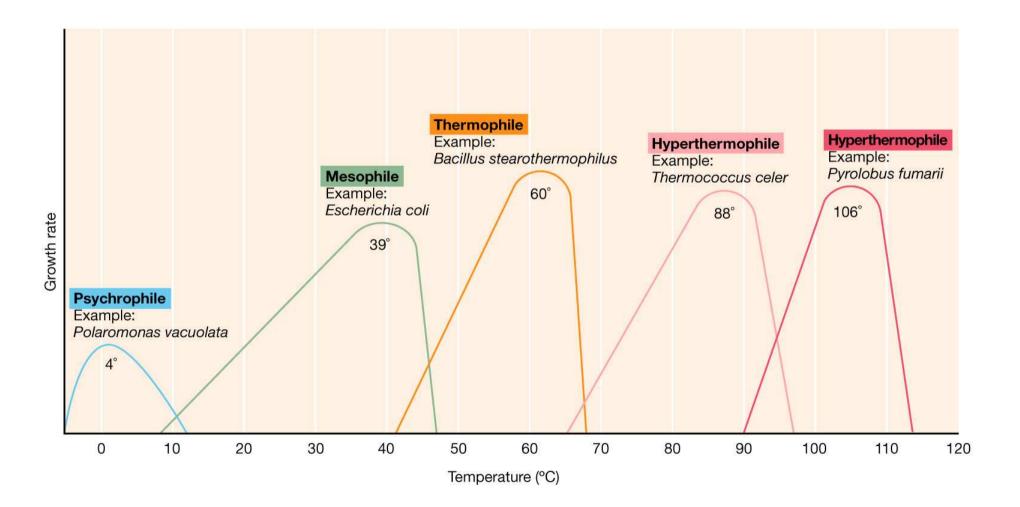
Incubation under anoxic conditions

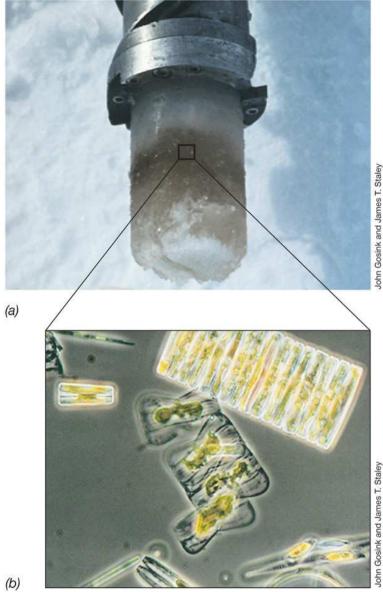
Anoxic jar- A chemical reaction in the envelope in the jar generates H_2 + CO_2 . The H_2 reacts with O_2 in the jar on the surface of a palladium catalyst to yield H_2O ; the final atmosphere contains N_2 , H_2 , and CO_2 .

Four-electron reduction of O_2 to water by stepwise addition of electrons. All the intermediates formed are reactive and toxic to cells except for water

 $O_2 + e^- \rightarrow O_2^-$ Superoxide $O_2^- + e^- + 2 H^+ \rightarrow H_2O_2$ Hydrogen peroxide $H_2O_2 + e^- + H^+ \rightarrow H_2O$ + OH• Hydroxyl radical $OH^- + e^- + H^+ \rightarrow H_2O$ Water

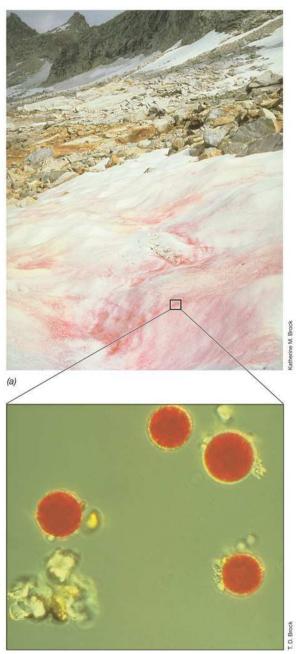
Overall: $O_2 + 4 e^- + 4 H^+ \rightarrow 2 H_2O$


Microbial growth: the effect of environmental factors on growth


Microbial growth: the effect of temperature on growth

Tab. 6.1Limiti superiori di temperatura per la crescita di diversi organismi				
Gruppo		Limiti superiori di temperatura (°C)		
Animali				
Pesci e alt	ri vertebrati acquatici	38		
Insetti		45-50		
Ostracodi	(crostacei)	49-50		
Piante				
Piante vas	colari	45		
Muschi		50		
Microrgani	smi eucariotici			
Protozoi		56		
Alghe		55-60		
Funghi		60-62		
Procarioti				
Batteri				
Cianoba	tteri	70-74		
Fototrofi anossigenici		70-73		
Chemiorganotrofi/chemiolitotrofi		95		
Archea				
Chemiorganotrofi/chemiolitotrofi		113		
	eriore di temperatura per la cresci correlate di <i>Pyrodictium</i> possono ci			

Temperature classes of organisms



(C)

Antartic microbial habitats

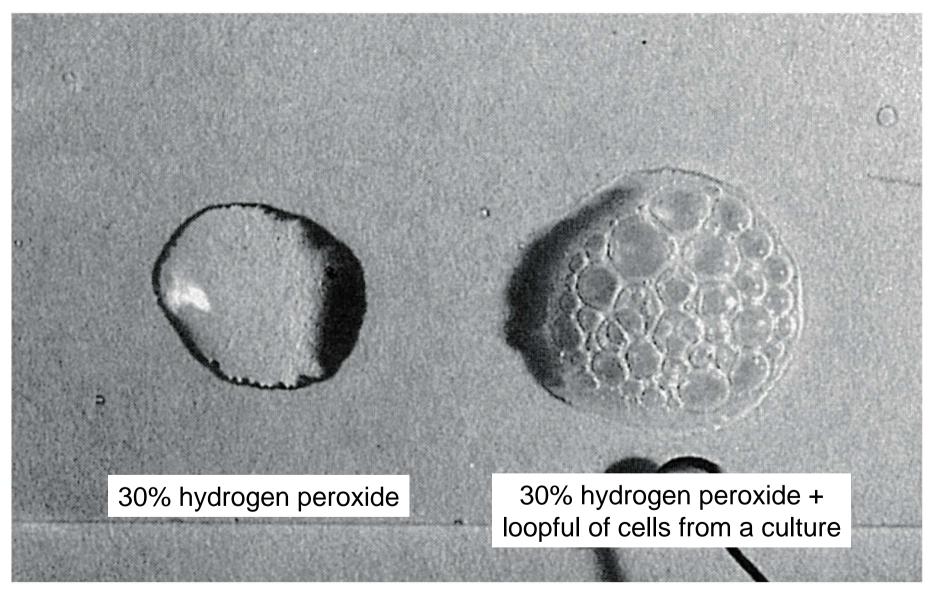
Snow algae

Growth of hyperthermophiles in boiling water: microcolony of prokaryotes that developed on a microscope slide immersed in a boiling spring

Boulder Spring, a small boiling spring in Yellowstone National Park

Growth of thermophilic cyanobacteria in hot spring in Yellowstone National Park

Microbial growth: the growth at low or high pH


(a) Catalase: Enzymes that destroy $H_2O_2 + H_2O_2 \rightarrow 2H_2O + O_2$ toxic oxygen species

(b) Peroxidase: $H_2O_2 + NADH + H^+ \rightarrow 2 H_2O + NAD^+$

(c) Superoxide dismutase: $O_2^- + O_2^- + 2 H^+ \rightarrow H_2O_2 + O_2$

(d) Superoxide dismutase/catalase in combination: $4 O_2^- + 4 H^+ \rightarrow 2 H_2 O_2 + 3 O_2$

(e) Superoxide reductase: $O_2^- + 2 H^+ + cyt c_{reduced} \rightarrow H_2O_2 + cyt c_{oxidized}$ Testing a microbial culture for the presence of catalase

Tab. 2.1 Classi ed esempi di estremofiliª

Estremi	Tipo	Genere /Specie	Dominio	Habitat	Minimo	Optimum	Massimo
Temperatura							
Alta	Ipertermofili	Pyrolobus fumarii	Archea	Molto caldo, sorgenti idrotermali sottomarine	90 °C	106 °C	113 °C*
Bassa	Psicrofili	Polaromonas vacuolata	Batteri	Banchise polari	0 °C	4 °C	12 °C
pН							
Basso	Acidofili	Picrophilus oshimae	Archea	Sorgenti calde acide	-0,06 °C	0,7 °C°	4
Alto	Alcalofili	Natronobaclerium gregoryi	Archea	Laghi con elevata concentrazione di carbonato di sodio	8,5 °C	10 °C ^d	12
Pressione	Barofili	Moritella yayanosii [¢]	Batteri	Fondali oceanici	500 atm	700 atm	> 1000 atm
Concentrazione di sali (NaCl)	Alofili	Halobacterium salinarum	Archea	Salino	15%	25%	32% (saturazione

^d Di ciascuna categoria è citato l'organismo che detiene il primato in relazione alla richiesta di condizioni di crescita estreme.
^b Un nuovo archea isolato sembra poter crescere fino a 121 °C.
^c P. oshimae è anche un termofilo con crescita ottimale a 60 °C.
^d N. gregoryi è anche un alofilo estremo con crescita ottimale al 20% di NaCl.
^e Moritella yaynnosii è anche uno psicrofilo con temperature di crescita ottimali di circa 4 °C.