MICROBIOLOGIA GENERALE

Microbial interactions with animals: the microbiome

Relationships of microorganisms with animals: the symbioses

Interaction	Species A	Species B
<u>Commensalism</u>	Receives benefit	Not affected
<u>Mutualism</u>	Receives benefit	Receives benefit
<u>Parasitism</u>	Receives benefit	Harmed

 Mutualism (+ +)
 Obliged: always cause of disease.

 Commensalism (0 +)
 Mycobacterium tubercolosis

 Pathogens (- +)
 Neisseria gonorrhoeae

 Opportunistics: belong to the normal microbiota

 Staphylococcus aureus

 Escherichia coli

Solo pochi batteri sono "sempre" patogeni (es. Mycobacterium tuberculosis)

Un certo numero di microrganismi sono patogeni solo in determinate circostanze (es. Streptococcus epidermidis, Escherichia coli)

Molti microrganismi possono instaurare relazioni benefiche con l'ospite

Human opportunistic bacterial pathogens

Insects as Microbial Habitats

The cellulolytic systems of termites

Microbial composition of termite hindgut inferred from 16S rRNA gene sequences

Mammals as Microbial Habitats

The mammalian gut architecture

Foregut fermenters Examples: Ruminants (photo 1), colobine monkeys, macropod marsupials, hoatzin (photo 2)

Hindgut fermenters Examples: Cecal animals (photos 3 and 4), primates, some rodents, some reptiles

4

Ruminal microbial community inferred from 16S rRNA gene

Table 22.2 Characteristics of some rumen prokaryotes

Organism ^a	Morphology	Fermentation products
Cellulose decomposers		
Gram-negative		
Fibrobacter succinogenes ^b	Rod	Succinate, acetate, formate
Butyrivibrio fibrisolvens ^c	Curved rod	Acetate, formate, lactate, butyrate, H_2 , CO_2
Gram-positive		
Ruminococcus albus ^c	Coccus	Acetate, formate, H ₂ , CO ₂
"Clostridium lochheadii"	Rod (endospores)	Acetate, formate, butyrate, H_2 , CO_2
Starch decomposers		
Gram-negative		
Prevotella ruminicola ^d	Rod	Formate, acetate, succinate
Ruminobacter amylophilus	Rod	Formate, acetate, succinate
Selenomonas ruminantium	Curved rod	Acetate, propionate, lactate
Succinomonas amylolytica	Oval	Acetate, propionate, succinate
Gram-positive		
Streptococcus bovis	Coccus	Lactate
Lactate decomposers		
Gram-negative		
Selenomonas ruminantium subsp. lactilytica	Curved rod	Acetate, succinate
Megasphaera elsdenii	Coccus	Acetate, propionate, butyrate, valerate, caproate, H ₂ , CO ₂
Succinate decomposer		
Gram-negative		
Schwartzia succinovorans	Rod	Propionate, CO ₂
Pectin decomposer		
Gram-positive		
Lachnospira multipara	Curved rod	Acetate, formate, lactate, H_2 , CO_2
Methanogens	and the second	
Methanobrevibacter ruminantium	Rod	CH_4 (from $H_2 + CO_2$ or formate)
Methanomicrobium mobile	Rod	CH_4 (from $H_2 + CO_2$ or formate)

RUMINE

Bacteroidetes

- Prevotella ruminicola
- Prevotella bryantil

Firmicutes

- Butyrovibrio fibrisolvens Ruminococcus flavefaciens
- Ruminococcus albus
- Eubacterium cellulosolvens

Fibrobacter

- Fibrobacter succinogenes
 Fibrobacter intestinalis

Normal human-microbial interactions

The human microbiome

A microbiota is the community of commensal, symbiotic and pathogenic microorganism of our body. Microbiome and microbiota describe either the collective genomes of the microorganisms that reside in an environmental niche or the microorganisms themselves, respectively. However, by the original defonitions these terms are largely synonymous

Relationships among bacteria and humans

The associations are, for the most part, mutualistics

BENEFITS:

- Nutrients (Vit B, Vit K)
- Antigenic stimulation(IgA)
- Colonization strategy: exclusion of pathogens

DISADVANTAGES:

- Immunosuppression
- Change of district
 - Dismicrobism

Microbiota and Microbiome of Human Body

Normal flora 10¹⁴ microbial cells on the human body.

3.3 million genes

Amount of bacteria per gram of cellular component

- Stomach-101 to 102 cells
- Duodenum-10³ cells
- Jejunum-10⁴ cells
- Ileum 10⁴ to 10⁷ cells
- Proximal colon 10¹⁰ to 10¹¹ cells
- Transverse colon 10¹¹ to 10¹² cells
- Distal colon >10¹² cells

"the microbiota can be viewed as a metabolic organ exquisitely tuned to our physiology that performs function we have not had to evolve on our own"

Backhed et al. 2004. PNAS 101:15718-15723

The human microbiota

Anatomical site	Most prevalent taxa ^a
Skin	Acinetobacter, Corynebacterium, Enterobacter, Klebsiella, Malassezia (f), Micrococcus, Propionibacterium, Proteus, Pseudomonas, Staphylococcus, Streptococcus
Mouth	Streptococcus, Lactobacillus, Fusobacterium, Veillonella, Corynebacterium, Neisseria, Actinomyces, Geotrichum (f), Candida (f), Capnocytophaga, Eikenella, Prevotella, spirochetes (several genera)
Respiratory tract	Streptococcus, Staphylococcus, Corynebacterium, Neisseria, Haemophilus
Gastrointestinal tract ^b	Lactobacillus, Streptococcus, Bacteroides, Bifidobacterium, Eubacterium, Peptococcus, Peptostreptococcus, Ruminococcus, Clostridium, Escherichia, Klebsiella, Proteus, Enterococcus, Staphylococcus, Methanobrevibacter, gram-positive bacteria, Proteobacteria, Actinobacteria, Fusobacteria
Urogenital tract	Escherichia, Klebsiella, Proteus, Neisseria, Lactobacillus, Corynebacterium, Staphylococcus, Candida (f), Prevotella, Clostridium, Peptostreptococcus, Ureaplasma, Mycoplasma, Mycobacterium, Streptococcus, Torulopsis (f)
AThis list is not meant to be exhaust	ive, and not all of these organisms are found in every individual. Distribution may vary with age (adults vs. children) and sex. Many of these

^aThis list is not meant to be exhaustive, and not all of these organisms are found in every individual. Distribution may vary with age (adults vs. children) and sex. Many of these organisms are opportunistic pathogens under certain conditions. Some taxa are found at more than one body area. (f), fungi. ^bFor a molecular picture of the prokaryotic diversity of the human large intestine, see *2* Section 22.8.

"The human microbiota consists of the 10-100 trillion symbiotic microbial cells harbored by each person, primarily bacteria in the gut; the human microbiome consists of the genes these cells harbor" (Nature, 2012)

Compositional differences in the microbiome by anatomical site

Nature Reviews | Genetics

Acquisition of the microbiome in early life

FETUS = STERILE

First colonization occurs:

- \checkmark through the birth canal;
- ✓ first breaths;
- ✓ operators' hands;
- \checkmark food ingestion.

Acquisition of the microbiome in early life by vertical transmission, and factors modifying mother-to-child microbial transmission

Nature Reviews | Genetics

Acquisition of the gut microbiome in early life

Neonato

The human microbiota: general features

- Microorganisms of the normal flora exhibits tissue preferences or predilection for colonization (tissue tropism)
- Many of them are able to specifically colonize a particular tissue or surface using their own surface components (e.g. capsules, fimbriae, pili, cell wall components, EPS) as specific ligands for attachment to specific receptors located at the colonization site.

S. pyogenes	Protein F	Amino terminus of fibronectin	Pharyngeal epithelium
S. mutans	Glycosyl transferase	e Salivary glycoprotein	Pellicle of tooth
S. pneumoniae	Cell-bound protein	N-acetylhexosamine-galactose	Mucosal epithelium
S. aureus	Cell-bound protein	Amino terminus of fibronectin	Mucosal epithelium
Enterotoxigeni <i>E. coli</i>	c Type-1 fimbriae	Species-specific carbohydrate(s)	Intestinal epithelium
Uropathogenic <i>E. coli</i>	Type 1 fimbriae	Complex carbohydrate	Urethral epithelium
Uropathogenic <i>E. coli</i>	P-pili (pap)	Globobiose linked to ceramide lipid	Upper urinary tract
B. pertussis	Fimbriae ("filamentous hemagglutinin")	s Galactose on sulfated glycolipids	Respiratory epithelium
V. cholerae	N-methylphenylalanine	pili Fucose and mannose	Intestinal epithelium

The human microbiota: general features

 Some bacteria of the microbiota are able to construct biofilms on tissue surface or they are able to colonized a biofilm built by another bacterial species (e.g. dental plaque)

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

The skin microbiota

TRANSIENT >>> RESIDENT

✓ pH: acid 4-6

✓ Dry environment

- ✓ High NaCl concentration
- ✓ Inhibitory substances (lysozyme, lipids)

 Table 23.2
 Predominant microbial phyla and taxa in

the oral cavity^a

The Dental Plaque

(a)

The Dental Plaque

Day 1 1436 mm² Day 10 22,522 mm²

Microbiota of the Dental plaques: The Colonizers' Pyramid

Dental plaque: the first colonizers

Streptococcus mutans, mitis, sobrinus, suis

Development of dental plaques and quorum sensing

Microbiota of the respiratory tract

Naso-faringe

Neisseria spp.,

Haemophilus spp.).

causano malattie.

(Staphylococcus spp., Micrococcus spp., Corynebacterium spp.,

Orofaringe

Microflora differente da quella del naso-faringe, complessa e contenente specie potenzialmente patogene, quali S. pyogenes, S. pneumoniae.

Microbiota of the human gastrointestinal tract

Microbiota of the human gastrointestinal tract

Microorgansim	Range of Incidence
Bacteroides fragilis	100
Bacteroides melaninogenicus	100
Bacteroides oralis	100
Lactobacillus	20-60
Clostridium perfringens	25-35
Clostridium septicum	5-25
Clostridium tetani	1-35
Bifidobacterium bifidum	30-70
Staphylococcus aureus	30-50
Enterococcus faecalis	100
Escherichia coli	100
Salmonella enteritidis	3-7
Salmonella typhi	0.00001
Klebsiella sp.	40-80
Enterobacter sp.	40-80
Proteus mirabilis	5-55
Pseudomonas aeruginosa	3-11
Peptostreptococcus sp.	common
Peptococcus sp.	moderate
Methanogens (Archaea)	common

Microbial habitats in the human lower gastrointestinal tract

Dominant gut phyla:

Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, Verrucomicrobia

Predominant families in the:

Microbial composition of the human colon inferred From 16S RRNA gene sequences

Microbiota of the urogenital tract

Normal vaginal flora depends on hormonal levels of the host:

- newborns: Lactobacillus
- infants: Stafilococcus, Streptococcus, Enterobacteriaceae
- from puberty: Lactobacillus, Stafilococcus, Streptococcus,
- Enterococcus, Enterobacteriaceae, anaerobic bacteria
- after menopause: similar to that before puberty

Lactobacillus Streptococcus Stafilococcus coag neg

Germ-free mice: role of the microbiota

Germ-free hosts, especially murine (rat or mouse) animals have become a powerful tool for exploring the interplay between the host and microorganisms inhabiting the human intestine

Gut from a germ-free mous

Gut from a wt mouse

Benefit of the normal human microbiota

- ✓ The normal flora synthesize and excrete vitamins (ex. enteric bacteria secrete Vitamin K and Vitamin B12).
- ✓ The normal flora prevent colonization by pathogens competing for attachment sites or for essential nutrients.
- The normal flora may antagonize other bacteria through the production of substances which inhibit or kill nonindigenous species (ex. bacteriocins).
- ✓ The normal flora stimulate the development of certain tissues (ex. the caecum and certain lymphatic tissues in the GI tract).
- ✓ The normal flora stimulate the production of cross-reactive antibodies

Benefit of the normal human microbiota

Mechanisms by which the normal flora competes with invading pathogens: the surface exclusion

Biochemical/metabolic contribution of intestinal microorganisms

Process	Product
Vitamin synthesis	Thiamine, riboflavin, pyridoxine, B ₁₂ , K
Gas production	CO_2 , CH_4 , H_2
Odor production	H ₂ S, NH ₃ , amines, indole, skatole, butyric acid
Organic acid production	Acetic, propionic, butyric acids
Glycosidase reactions	β-Glucuronidase, β-galactosidase, β-glucosidase, α-glucosidase, α-galactosidase
Steroid metabolism (bile acids)	Esterified, dehydroxylated, oxidized, or reduced steroids

Differences in the gut microbial communities between lean and obese mice

Examples of associations of human conditions with particular microbiota characteristics

Disease	Relevant finding	Refs
Psoriasis	Increased ratio of Firmicutes to Actinobacteria	88
Reflux oesophagitis	Oesophageal microbiota dominated by gram-negative anaerobes; gastric microbiota with low or absent <i>Helicobacter pylori</i>	75,133
Obesity	Reduced ratio of Bacteroidetes to Firmicutes	17,31
Childhood-onset asthma	Absent gastric <i>H. pylori</i> (especially the cytotoxin-associated gene A (<i>cagA</i>) genotype)	96,134
Inflammatory bowel disease (colitis)	Larger populations of Enterobacteriaceae	113
Functional bowel diseases	Larger populations of Veillonella and Lactobacillus	135
Colorectal carcinoma	Larger populations of Fusobacterium spp.	101,102
Cardiovascular disease	Gut-microbiota-dependent metabolism of phosphatidylcholine	136