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3.5 Hypothesis Testing: Examples

3.5.1 Example 1. Testing for a Mean: the One-Sample Case

A classic test in statistics concerns the unknown mean µ of a normal distri-
bution. Suppose first that the variance σ2 of this distribution is known. One
case of this is the test of the null hypothesis µ = µ0 against the one-sided
alternative hypothesis µ > µ0. If this test is carried out using the observed
values of random variables X1, X2, . . . , Xn having the normal distribution
in question, the statistical theory of Chapter 9 leads to the use of X̄ as
an optimal test statistic and the rejection of the null hypothesis if the ob-
served value x̄ of X̄ is “too much larger” than µ0. The random variable X̄
has known variance σ2/n and mean µ0 if the null hypothesis is true. The
standardization procedure described in Section 1.10.2 then shows that the
random variable Z, defined by

Z =
(X̄ − µ0)

√
n

σ
(3.24)

has the standard normal distribution when the null hypothesis is true. Since
the probability that such a random variable exceeds 1.645 is 0.05, a desired
Type I error 5% is achieved if the null hypothesis is rejected when

(x̄− µ0)
√
n

σ
≥ 1.645, (3.25)

where x̄ is the observed value of X̄ once the data are obtained. Equivalently,
the null hypothesis is rejected if

x̄ ≥ µ0 + 1.645σ/
√
n. (3.26)

If the alternative hypothesis had been µ ≤ µ0, the null hypothesis would
be rejected if the observed value x̄ ≤ µ0 − 1.645σ/

√
n. If the alternative

hypothesis had been two-sided, so that no specification is made for the
value of µ, the null hypothesis would be rejected if |x̄ − µ0| ≥ 1.96σ/

√
n.

This shows that the nature of the alternative hypothesis determines the
values of the test statistic that lead to rejection of the null hypothesis. It
will be shown in Section 3.7 that in some cases it can also determine the
choice of the test statistic itself.
A more realistic situation arises when σ2 is unknown, in which case a

one-sample t-test is used. Here we estimate the unknown variance σ2 by s2,
defined in (3.6), and use as test statistic the one-sample t statistic, defined
by

t =
(x̄− µ0)

√
n

s
. (3.27)
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Under the assumption that X1, X2, . . . , Xn are NID(µ, σ2), the null
hypothesis distribution of T, defined by

T =
(X̄ − µ0)

√
n

S
, (3.28)

is well known (as the t distribution with n − 1 degrees of freedom). The
density function of T is independent of µ0 and σ2, being

fT (t) =
Γ
(
n+1
2

)
√
nπΓ
(
n
2

) (
1 + t2

n

)(n+1)/2
, −∞ < t < +∞. (3.29)

An outline of the derivation of this density function is given in Problem
3.7.
It is perhaps remarkable that this density function is independent of the

value of σ2. The value σ2 is not specified under the null hypothesis, and
this implies that significance points of t can be calculated no matter what
the value of σ2 might be. These significance points have been calculated
from (3.29) for a variety of values of n and the chosen Type I error, and
are widely available.
The t distribution (3.29) differs from standard normal distribution ap-

plying for the statistic Z, so that the significance points appropriate for
Z are not appropriate for T . However the t distribution converges to the
standard normal distribution as n → ∞.
Since the null hypothesis distribution of T is independent of the values

of µ0 and σ2, T is said to be a pivotal quantity. It is because of the pivotal
nature of T that explicit significance points of the t distribution can be
found, whatever the values of µ0 and σ2 might be.

3.5.2 Example 2. The Two-Sample t-Test

A protein coding gene is a segment of the DNA that codes for a partic-
ular protein (or proteins). In any given cell type at any given time, this
protein may or may not be needed. Each cell will generate the proteins it
needs, which will usually be some small subset of all possible proteins. If
a protein is generated in a cell, we say that the gene coding for this pro-
tein is expressed in that cell type. Furthermore, any given protein can be
expressed at many different levels. One cell type might need more copies
of a particular protein than another cell type. When this happens we say
that the gene is differentially expressed between the two cell types. There
are several techniques for measuring the level of gene expression in a cell
type. All of these methods are subject to both biological and experimental
variability. Therefore, one cannot simply measure the level of expression
once in each cell type to test for differential expression. Instead, one must
repeat each experiment several times and perform a statistical test of the
hypothesis that they are expressed at the same or different levels.
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Suppose that the mean expression levels of a given gene in two cell types,
for example normal and tumor (cancerous) cells, are to be compared. In
statistical terms, this comparison can be framed as the test of the equality
of two unknown means. For the moment we assume that the (unknown)
variance of expression level in normal cells is identical to that in tumor
cells. To test for equality of the two means, we plan to measure the expres-
sion levels of m cells of one type and compare these with the expression
levels of n cells of another type. Suppose that, before the experiment, the
measurements X11, X12, . . . , X1m from the first cell type are thought of
as m NID(µ1, σ

2) random variables, and the measurements X21, X22, . . . ,
X2n from the second cell type are thought of as n NID(µ2, σ

2) random
variables. The null hypothesis states that µ1 = µ2 (= µ, unspecified). We
assume for the moment that the alternative hypothesis leaves both µ1 and
µ2 unspecified, so that our eventual test is two-sided.
The theory in Chapter 9 shows that, under the assumptions made, the

optimal test statistic is T , defined now by

T =
(X̄1 − X̄2)

√
mn

S
√
m+ n

, (3.30)

with S defined by

S2 =

m∑
i=1

(X1i − X̄1)
2 +

n∑
i=1

(X2i − X̄2)
2

m+ n− 2
. (3.31)

The form of this test statistic can been understood by observing that the
variance of X̄1 − X̄2 is σ2/m+ σ2/n. If we had known the variance σ2, we
could use as test statistic the quantity Z, defined by

Z =
X̄1 − X̄2√

σ2/m+ σ2/n
=

(X̄1 − X̄2)
√
mn

σ
√
m+ n

. (3.32)

Since σ2 is unknown, it is estimated by the pooled estimator S2, using
observations from both normal and tumor cells, and in general from the
two groups being compared. This leads to the T statistic in (3.30).
The null hypothesis probability distribution of T is independent of both

the value for the (common) mean unspecified under the null hypothesis and
of the unknown variance σ2. This implies that T (defined by (3.30)) is a
pivotal quantity. The null hypothesis distribution of T is the t distribution
(3.29) with m + n − 2 degrees of freedom, and this enables a convenient
assessment of the significance of the observed value t of T , defined as

t =
(x̄1 − x̄2)

√
mn

s
√
m+ n

, (3.33)

N normal
I identically
D distributed
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with s defined by

s2 =

m∑
i=1

(x1i − x̄1)
2 +

n∑
i=1

(x2i − x̄2)
2

m+ n− 2
. (3.34)

For the two-sided test discussed above, significantly large positive or
large negative values of t lead to the rejection of the null hypothesis. When
the alternative hypothesis is µ1 ≥ µ2, significantly large positive values
of t lead to the rejection of the null hypothesis, and when the alternative
hypothesis is µ1 ≤ µ2, significantly large negative values of t lead to the
rejection of the null hypothesis.
In reality, expression levels cannot generally be expected to have normal

distributions, nor should the variances of the two types generally be ex-
pected to be equal. These two assumptions were made in the above t-test
procedure, and the significance points of the t distribution are calculated
assuming that both assumptions hold. Thus in practice it might not be
appropriate to use the t-test to test for differential expression. In gen-
eral, if the normal distribution assumption is unjustified we should use the
non-parametric tests: these are discussed in Section 3.8.2 and in Chapter
13.
The optimality property of the two-sample t-test procedure described

above derives from statistical theory – see Chapter 9. The theoretical de-
velopment assumes that the variances of the random variables in the two
groups considered are equal. When, as is often the case in practice, these
two variances cannot reasonably be taken as being equal, the theoretical
approach of Chapter 9 fails to lead to a testing procedure for which the
test statistic has the same distribution for all parameter values not speci-
fied by the null hypothesis. That is, no pivotal quantity analogous to equal
variance case T as defined in (3.30) exists. This implies that there is no well-
defined null hypothesis probability distribution available analogous to that
in (3.29) from which significance points can be obtained, whatever the un-
known variances in the two groups might be. Because of this, approximate
heuristic procedures are required.
One frequently used procedure is as follows. Under the null hypothesis,

X̄1 and X̄2 have normal distributions with the same mean and respective
variances σ2

1/m and σ2
2/n, so that the difference X̄1 − X̄2 has a normal

distribution with mean zero and variance

σ2
1

m
+

σ2
2

n
. (3.35)

The variances σ2
1 and σ2

2 are unknown, but have estimators S2
1 and S2

2 ,
where

S2
1 =

∑m
i=1(Xi1 − X̄1)

2

m− 1
, S2

2 =

∑n
i=1(Xi2 − X̄2)

2

n− 1
. (3.36)
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One then computes the statistic T ′, defined by

T ′ =
X̄1 − X̄2√
A+B

, (3.37)

where

A =
S2
1

m
, B =

S2
2

n
.

When the null hypothesis of equal means is true, T ′ has an approximate
t distribution with degrees of freedom given by the largest integer less than
or equal to ν (see Lehmann (1986)), where ν defined by

ν =
(A+B)2

A2

m−1 + B2

n−1

.

When m = n, T ′ is identical to the T statistic (3.30). However, in this
case the number of degrees of freedom appropriate for t′ is not equal to
the number 2(n − 1) applying when the two variances are assumed to be
equal: The value of ν lies in the interval [n− 1, 2(n− 1)], the actual value
depending on the ratio of S2

1/S
2
2 .

Markowski and Markowski (1990) show for the case m = n that even
when the variances in the two groups differ, use of the “equal variance”
t-test procedure leads to a very small error.
An important case of the two-sample t test arises if n = m and the

random variables X1i and X2i are logically paired, for example being ex-
pression levels of normal and tumor cells taken from the same person. In
this “paired t-test” case the test is carried out by using the differences
Di = X1i − X2i and basing the test entirely on these differences. This
reduces the test to a one-sample t-test with test statistic T as defined in
(3.28) and with Xi replaced by Di and µ0 set equal to 0. The test statistic
is then

T =
D̄
√
n

SD
, (3.38)

where S2
D defined by the right-hand side in (3.5), with Xi replaced by Di

and X̄ by D̄.
The advantage of the pairing procedure is that the variance estimate

S2
D measures only cell type to cell type variation, and eliminates person-

to-person variation. If there is significant person-to-person variation, this
provides a more powerful test of cell type to cell type variation. In this
procedure we see the beginnings of the concept of the Analysis of Vari-
ance (ANOVA). In an ANOVA procedure the variation in a body of data
is broken down into separate components, each measuring one source of
variation, and the significance of one potential source of variation can be
investigated free of any influence of other potential sources of variation.
The ANOVA concept is developed at length in Section 9.5.
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3.5.3 Example 3. Tests on Variances

In Section 3.5.2 we considered two tests, each comparing the means of two
groups of random variables. These tests differ depending on whether or not
one is prepared to assume that the variances of the random variables in
the two groups are equal. This makes it important to describe a test for
equality of variances.
We suppose that X11, X12, . . . , X1m are NID(µ1, σ

2
1) and X21, X22, . . . ,

X2n are NID(µ2, σ
2
2). We wish to test the null hypothesis σ2

1 = σ2
2 . To do

this we consider the ratio S2
1/S

2
2 of the two variance estimators S2

1 and S2
2

defined in (3.36). Under the null hypothesis this ratio has the F distribution
with (m−1, n−1) degrees of freedom, developed in Section 2.13, whatever
values the unknown means µ1 and µ2 take. If for example the alternative
hypothesis were σ2

1 > σ2
2 , significantly large values of the observed value

of this ratio would lead to rejection of the null hypothesis. Significance
points of F for Type I errors arising in practice are extensively tabulated,
allowing a ready evaluation of whether the observed value of the ratio is
indeed significantly large.
We will meet the F test in Section 9.5 in the context of ANOVA (the

analysis of variance), where (perhaps unexpectedly) it is used as a test for
the equality of several means, rather than as a test for the equality of two
variances.

3.5.4 Example 4. Testing for the Parameters in a
Multinomial Distribution

In this example we consider a test of the null hypothesis that prescribes
specific values for the probabilities {pi} in the multinomial distribution
(2.30). The alternative hypothesis considered here is composite and leaves
these probabilities unspecified. This can be used, for example, to test for
prescribed probabilities for the four nucleotides in a DNA sequence.
Let Yi be the number of observations in category i. A test statistic often

used for this testing procedure is X2, defined by

X2 =

k∑

i=1

(Yi − npi)
2

npi
. (3.39)

Sufficiently large values of the observed value

k∑

i=1

(yi − npi)
2

npi
(3.40)

of X2 lead to rejection of the null hypothesis. The quantity (3.40) may be
thought of as a measure of the discrepancy between the observed values
{yi} and the respective null hypothesis expected values {npi}.


