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If possible, these equations are then solved explicitly for ξ̂MM and φ̂MM.

Example 2. If in the gamma distribution (1.75) both λ and k are unknown
and are to be estimated, equations (1.76), (1.31) and (8.35) show that the

method of moments estimators α̂ and k̂ are found from the equations

λ̂MM =
nk̂MM∑

Xi
, n−1

∑
X2

i =
( k̂MM

λ̂MM

)2
+

k̂MM

λ̂2
MM

. (8.36)

The values of λ̂MM and k̂MM are readily found from these equations (see
Problem 8.9).
We now compare these estimators with the corresponding maximum like-

lihood estimators. The maximum likelihood estimator of k, namely k̂MLE,
is independent of λ and is thus given by (8.34). The maximum likelihood

estimator of λ, namely λ̂MLE, is nk̂MLE/
∑

Xi. This equation is of the same

form as the first equation in (8.36), implying that when k̂MLE and k̂MM are

close, then λ̂MLE and λ̂MM are also close.

8.4.3 Least Squares and Multiple Regression

Another estimation procedure, which in some cases is equivalent to the
maximum likelihood method, is that of least squares. We illustrate it in the
context of the general linear model, with which it is most closely associated.
In describing the least squares approach it is convenient to depart from

our standard convention and to use the notation Y for a random variable,
whether it be discrete or continuous. Suppose first that Y1, Y2, . . . , Yn are
independently but not identically distributed random variables, Yj having
a probability distribution with mean of the form µj = α+βxj and variance
σ2. This model is most conveniently written in the form

Yj = α+ βxj + Ej , (8.37)

where E1, E2, . . . , En are iid random variables with mean 0 and variance
σ2. The model is most frequently used when one wishes to estimate the way
in which some random variable Yj depends on some fixed quantity xj . This
is the simple regression model, and is used very widely in applied statistics.
The form of equation (8.37) explains the choice of the notation Y for the

random variable involved in least squares calculations, since if the term Ej

is ignored, this is the equation of a straight line in the standard cartesian
form y = mx+ b.
In the model (8.37), α and β are unknown parameters that we might

wish to estimate. The least squares estimators of α and β are found as the
values that minimize the sum of squares

n∑

j=1

E2
j =

n∑

j=1

(
Yj − α− βxj

)2
. (8.38)
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The resulting least squares estimators α̂ and β̂ are given explicitly by

β̂ =

∑n
j=1 Yj(xj − x̄)∑n
j=1(xj − x̄)2

, α̂ = Ȳ − β̂x̄, (8.39)

where x̄ = (x1+x2+· · ·+xn)/n, Ȳ = (Y1+Y2+· · ·+Yn)/n. The estimators

β̂ and α̂ are unbiased (see Problem 8.10).

The fact that an explicit expression is available for both α̂ and β̂ should
not pass without comment. If the mean of Yj were not a linear function
of α and β it might not be possible to find explicit expressions for α̂ and
β̂, and the best that can be done might be to find α̂ and β̂ by a purely
numerical procedure. We take up this comment again below.
Given observed values y1, y2, . . . , yn of Y1, Y2, . . . , Yn, the estimates of β

and α are, respectively,

β̂ =

∑n
j=1 yj(xj − x̄)∑n
j=1(xj − x̄)2

, α̂ = ȳ − β̂x̄, (8.40)

Here we have abused notation and, for purposes of typographical clarity,
have used the same symbol for the estimators and the estimates of α and
β.
If Y1, Y2, . . . , Yn are independent normal random variables, each having

variance σ2 and with Yj having mean α + βxj , the maximum likelihood
estimators of α and β are the least squares estimators (8.39) of these
parameters (see Problem 8.11).
The model described above assumes that the various Yj random variables

all have the same variance. If some of the random variables have variances
greatly exceeding that of the remaining random variables, the estimates of
the parameters might be unduly influenced by those random variables with
a large variance. In this case it might be thought desirable to minimize the
weighted sum of squares

∑n
j=1 wj(Yj−α−βxj)

2 rather than the unweighted
sum in (8.38), where wj is a weighting factor associated with Yj and is small
for those random variables with a large variance. If we use the suffix “w”
for the weighted least squares estimates of α and β, these estimates are
given by

β̂w =
(
∑

wj)(
∑

wjxjyj)− (
∑

wjyj)(
∑

wjxj)

(
∑

wj)(
∑

wjx2
j )− (

∑
wjxj)2

,

α̂w =

∑
wjyj − β̂w

∑
wjxj∑

wj
,

(8.41)

all sums being over j = 1, 2, . . . , n.
A further application of weighted least squares estimation is in the con-

struction of loess curves, discussed in detail by Cleveland and Devlin (1988),
following the earlier work of Cleveland (1979). (The word “loess” is an
acronym (LOcally weighted regrESSion), and was chosen by Cleveland and
Devlin (1988), because of its use in describing geological strata. The spelling
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“lowess” occurs often in the literature. Since here we describe the work of
Cleveland and Devlin (1988), we adopt their spelling convention.)
Suppose that the relation between Y and x is nonlinear. Clearly any

linear estimation procedure, weighted or unweighted, is inappropriate. On
the other hand, a collection of linear estimation procedures, each one carried
out over a short range of x values, might be reasonable. Further, it might
be desirable that in any such local regression centered around the value x,
higher weights are given to values of xi close to x than to values further
from x. With these aims in mind, Cleveland and Devlin (1988), suggest the
following procedure.
We first consider some particular value of x, say xj . We choose some

number d and weighting factors wj−d, wj−d+1, . . . , wj+d and carry out a
weighted regression of Yj−d, Yj−d+1, . . . , Yj+d on xj−d, xj−d+1, . . . , xj+d,
using these weights. Cleveland and Devlin (1988) suggest values of d and
forms of the weights that lead to suitable loess curves.
This procedure will lead to regression estimates β̂w,j and α̂w,j , for the

weighted regression centered on xj . The observed value yj is then replaced

by y∗j = α̂w,j+ β̂w,jxj , the value of Y corresponding to xj predicted by this
(short) weighted least-squares line. This entire procedure is then carried
out for each value of j, with special calculations at boundary values where
j < d and j > n− d. The various values of the y∗j so found are now joined
to form a loess curve, which will generally be far smoother than the curve
joining the original yj values and provide a better fit to the data than an
ordinary linear regression.
We return to loess curves in Section 13.1.3, where their use in connection

with microarray analysis is discussed.
A second generalization of (8.37) arises when the mean µj of Yj is of the

form α+β1xj1+β2xj2+ · · ·+βkxjk, for some collection of known constants
xj1, xj2, . . . , xjk, so that we write

Yj = α+ β1xj1 + β2xj2 + · · ·+ βkxjk + Ej , j = 1, 2, . . . , n. (8.42)

Here α, β1, β2 , . . ., βk are unknown parameters that we wish to estimate,
and in the unweighted case the Ej , j = 1, 2, . . . , n are assumed to be iid ran-
dom variables with mean 0 and variance σ2. This is the multiple regression,
or general linear, model, and is important in many statistical procedures. A
particular case of this model is the polynomial regression model, for which
xji is of the form (xj)

i.
The least squares estimators of α, β1, β2, . . . , βk are those which minimize

the (unweighted) sum of squares
∑n

j=1 E
2
j . To find these estimators it is

convenient to write the multiple regression model (8.42) in the matrix and
vector form

Y = Cβ +E, (8.43)

Here Y = (Y1, Y2, . . . , Yn)
′, E = (E1, E2, . . . , En)

′, β = (α, β1, β2, . . . , βk)
′

and C is an n × (k + 1) matrix whose first column consists of 1’s and
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