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Linear regression

In Chapter 3 we looked at the simple linear regression model,

yi = β0 + β1xi + �i,

as a way to summarize a linear relationship between pairs of data (xi,yi).
In this chapter we return to this model. We begin with a review and then
further the discussion using the tools of statistical inference. Additionally,
we will see that the methods developed for this model extend readily to the
multiple linear regression model where there is more than one predictor.1

11.1 The simple linear regression model

Many times we assume that an increase in a predictor variable will corre-
spond to an increase (or decrease) in the response variable. A basic model for
this is the simple linear regression model:

yi = β0 + β1xi + �i.

The y variable is called the response variable and the x variable the pre-
dictor variable, covariate, or regressor.

As a statistical model, this says that the value of yi depends on three
things: that of xi, the function β0 + β1x, and the value of the random variable
�i. The model says that for a given value of x, the corresponding value of y
can be found by first applying the function to x and then adding the random
error term �i.

To be able to make statistical inference, we assume that the error terms,
�i, are i.i.d. and have a Normal(0,σ) distribution. This assumption can be
rephrased as an assumption on the randomness of the response variable.
If the x values are fixed, then the distribution of yi is normal with mean
µy|x = β0 + β1xi (depending of the values of x) and variance σ2 (not depend-
ing on the values of x). This can be expressed as yi has a Normal(β0 + β1xi,σ)

1There is a large literature on using R for modeling such as described here and related
extensions. For example, all of these books are quite informative: [57], [29], [22], [25], [20], [21],
and [48]. The text [36] introduces R through a modeling approach.
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distribution. If the x values are random, the model assumes that, condition-
ally on knowing these random values, the same is true about the distribution
of the yi.

Estimating the parameters in simple linear regression

One goal when modeling is to “fit” the model by estimating the parameters
based on the sample. For the regression model the method of least squares
is used. With an eye toward a more general usage, suppose we have several
predictors, x1, x2, . . . , xk; several parameters, β0, β1, . . . , βp; and some function,
f , which gives the mean for the variables yi. That is, the statistical model

yi = f (x1i, x2i, . . . , xki |β1, β2, . . . , βp) + �i.

The method of least squares finds values for the β’s that minimize the
squared difference between the actual values, yi, and those predicted by the
function f . That is, the following sum is minimized:

∑
i

�
yi − f (x1i, x2i, . . . , xki |β0, β1, . . . , βp)

�2 .

For the simple linear regression model, the formulas are not difficult to
write (they are given below). For the more general model, even if explicit
formulas are known, we don’t present them.

The simple linear regression model for yi has three parameters, β0, β1,
and σ2. The least-squares estimators for these are

�β1 =
∑(xi − x̄)(yi − ȳ)

∑(xi − x̄)2 , (11.1)

�β0 = ȳ − �β1 x̄, and (11.2)

�σ2 =
1

n − 2 ∑[yi − (�β0 + �β1xi)]
2. (11.3)

We call �y = �β0 + �β1x the prediction line; a value �yi = �β0 + �β1xi the pre-
dicted value for xi; and the difference between the actual and predicted val-
ues, ei = yi − �yi, the residual. The residual sum of squares is denoted RSS and is
equal to ∑i e2

i .

Quickly put, the regression line is chosen to minimize the residual sum of
squares, RSS; it has slope �β1, intercept �β0, and goes through the point (x̄, ȳ).
Furthermore, the estimate for σ2 is �σ2 = RSS/(n − 2).

Figure 11.1 shows a data set simulated from the equation yi = 1+ 2xi + �i,
where β0 = 1, β1 = 2, and σ2 = 3. Both the line y = 1 + 2x and the regression
line �y = 0.329+ 2.158 · x, predicted by the data, are drawn. They are different,
of course, as one of them depends on the random sample. Keep in mind
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Figure 11.1: Simulation of model yi = 1 + 2xi + �i. The regression line based
on the data is drawn with dashes. The big square marks the value (x̄, ȳ).

that the data is related by the true model, but if all we have is the data, the
estimated model is given by the regression line. Our task of inference is to
decide how much the regression line can tell us about the underlying true
model.

Using lm to find the estimates

In Chapter 3 we learned how to fit the simple linear regression model using
lm. The basic usage is of the form

lm(formula, data=..., subset=...)

Linear models are fit using R’s model formulas, of which we have already
seen a few examples.

The basic format for a formula is

response ~ predictor

The ~ (tilde) is read “is modeled by” and is used to separate the response
from the predictor(s). The response variable can have regular mathematical
expressions applied to it, but for the predictor variables the regular notations
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+, -, *, /, and ˆ have different meanings. A + means to add another term to
the model, - means to drop a term, more or less coinciding with the symbols’
common usage. But *, /, and ˆ are used differently. If we want to use regular
mathematical notation for the predictor we must insulate the symbols’ usage
with the I function, as in I(xˆ2).

As is usual with functions using model formulas, the data argument al-
lows the variable names to reference those in the specified data frame, and
the subset argument can be used to restrict the indices of the variables used
by the modeling function.

By default, the lm function will print out the estimates for the coefficients.
Much more is returned, but needs to be explicitly asked for. Usually, we store
the results of the model in a variable, so that it can subsequently be queried
for more information.

In Chapter 3 we fit a regression model to maximum heart rate by age
with:

res.mhr <- lm(maxrate ~ age, data=heartrate)
res.mhr

##
## Call:
## lm(formula = maxrate ~ age, data = heartrate)
##
## Coefficients:
## (Intercept) age
## 210.048 -0.798

These coefficients can be used directly for predictions. For example, a 50-
year-old male would have a predicted maximum heart rate of:

208.36 - 0.76 * 50

## [1] 170.4

Extractor functions for lm

The lm function is reticent, but we can coax out more information as needed.
This is done using extractor functions. Useful ones are summarized in Ta-
ble 11.1.

These functions are passed an object returned by a modeling function,
such as lm. These are “generic functions” which may have slightly different
implementations depending on what type of model object is passed as the
first object.

To illustrate, the estimate for σ2 can be found using the resid function to
retrieve the residuals from the model fitting:
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Function Description

summary returns summary information about the regression
plot makes diagnostic plots
coef returns the coefficients
confint returns confidence intervals for the coefficients
vcov estimated covariance between parameter estimates
residuals returns the residuals (can be abbreviated resid)
fitted returns fitted values, �yi
deviance returns RSS
predict performs predictions
anova finds various sums of squares
AIC is used for model selection
model.matrix matrix used to fit model mathematically

Table 11.1: Generic extractor functions for many of R’s modeling functions,
including lm.

n <- length(heartrate$age)
sum( resid(res)^2 ) / (n-2)

## [1] 31.05

Or, the RSS part can be found directly through deviance:

deviance(res)/ (n - 2)

## [1] 31.05

Problems

11.1 For the Cars93 (MASS) data set, answer the following:

1. For MPG.highway modeled by Horsepower, find the simple regression co-
efficients. What is the predicted mileage for a car with 225 horsepower?

2. Fit the linear model with MPG.highway modeled by Weight. Find the
predicted highway mileage of a 6,400 pound HUMMER H2 and a 2,524
pound MINI Cooper.

3. Fit the linear model Max.Price modeled by Min.Price. Why might you
expect the slope to be around 1?

Can you think of any other linear relationships among the variables?
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Age 2 (in.) 39 30 32 34 35 36 36 30

Adult (in.) 71 63 63 67 68 68 70 64

Table 11.2: Height as two-year-old and as an adult.

11.2 For the data set MLBattend (UsingR) concerning Major League Baseball
attendance, fit a linear model of attendance modeled by wins. What is the
predicted increase in attendance if a team that won 80 games last year wins
90 this year?

11.3 People often predict children’s future height by using their 2-year-old
height. A common rule is to double the height. Table 11.2 contains data for
eight people’s heights as 2-year-olds and as adults. Using the data, what is
the predicted adult height for a 2-year-old who is 33 inches tall?

11.4 The galton (UsingR) data set contains data collected by Francis Galton
in 1885 concerning the influence a parent’s height has on a child’s height. Fit
a linear model for a child’s height modeled by his parent’s height. Make a
scatterplot with a regression line. (Is this data set a good candidate for using
jitter?) What is the value of �β1, and why is this of interest?

11.5 Formulas (11.1), (11.2), and the prediction line equation can be rewritten
in terms of the correlation coefficient, r, as

�yi − ȳ
sy

= r
xi − x̄

sx
.

Thus the five summary numbers: the two means, the standard deviations,
and the correlation coefficient are fundamental for regression analysis.

This is interpreted as follows. Scaled differences of �yi from the mean ȳ are
less than the scaled differences of xi from x̄, as |r| ≤ 1. That is, “regression”
toward the mean, as unusually large differences from the mean are lessened
in their prediction for y.

For the data set galton (UsingR) use scale on the variables parent and
child, and then model the height of the child by the height of the parent.
What are the estimates for r and β1?

11.2 Statistical inference for simple linear regression

If the simple regression model is appropriate for our data, then statistical
inferences can be made about the unknown parameters.
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Statistical inferences

If the linear model seems appropriate for the data, statistical inference is
possible. What is needed is an understanding of the sampling distribution of
the estimators.

To investigate these sampling distributions, we performed simulations of
the model yi = xi + �i, using x <- rep(1:10,10) and y <- rnorm(100, x, 5).
Figure 11.2 shows the resulting regression lines for the different simulations.
For reference, a single result of the simulation is plotted using a scatterplot.
There is wide variation among the regression lines. In addition, histograms
of the simulated values of �β0 and �β1 are shown.

We see from the figure that the estimators are random but not arbitrary.
Both �β0 and �β1 are normally distributed, with respective means β0 and β1.
Furthermore, (n − 2)�σ2/σ2 has a χ2-distribution with n − 2 degrees of free-
dom.

We will use the fact that the following statistics have a t-distribution with
n − 2 degrees of freedom:

�β0 − β0

SE(�β0)
,

�β1 − β1

SE(�β1)
. (11.4)

The standard errors are found from the known formulas for the variances
of the �βi:

SE(�β0) = �σ
�

∑
x2

i
∑(xi − x̄)2

�1/2

, SE(�β1) =
�σ�

∑(xi − x̄)2
. (11.5)

(Recall that, �σ2 = RSS/(n − 2).)

Marginal t-tests

We can find confidence intervals and construct significance tests from the
statistics in (11.4) and (11.5). For example, a significance test for

H0 : β1 = b, HA : β1 �= b

is carried out with the test statistic

T =
�β1 − β1

SE(�β1)
.

Under H0, T has the t-distribution with n − 2 degrees of freedom.
A similar test for β0 would use the test statistic (�β0 − β0)/SE(�β0).
When the null hypothesis is β1 = 0 or β0 = 0 we call these tests marginal

t-tests, as they test whether the parameter is necessary for the model without
consideration of the other parameters involved.
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Figure 11.2: Four plots produced from a simulation finding the least squares
regression coefficients from a known model. The upper left plot regression
lines for 100 simulations from the model yi = xi + �i. The plotted points show
a single realization of the paired data during the simulation. The upper right
plot shows a scatterplot of the points (�β0, �β1). The lower left and right plots
are histograms of �β0 and �β1.

The F-test

An alternate test for the null hypothesis β1 = 0 can be done using a different
but related approach that generalizes to the multiple-regression problem.

One goal of modeling is the attempt to explain the variation in the re-
sponse variable using one or more predictor variables. The total variation in
the y values about the mean is

SST= total sum of squares = ∑(yi − ȳ)2.
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Algebraically (or geometrically), this can be shown to be the sum of two
easily interpreted terms:

∑(yi − ȳ)2 = ∑(yi − �yi)
2 + ∑(�yi − ȳ)2. (11.6)

The first term is the residual sum of squares, or RSS. The second is the
total variation for the fitted model about the mean and is called the regression
sum of squares, SSReg. Equation 11.6 becomes

SST= RSS+ SSReg.

For each term, a number—called the degrees of freedom—is assigned that
depends on the sample size and the number of estimated values in the term.
For the SST there are n data points and one estimated value, ȳ, leaving n − 1
degrees of freedom. For RSS there are again n data points but two estimated
values, �β0 and �β1, so n − 2 degrees of freedom. This leaves 1 degree of free-
dom for the SSReg, as the degrees of freedom are additive in this case. When
a sum of squares is divided by its degrees of freedom it is referred to as a
mean sum of squares.

We rewrite the form of the prediction line to:

�yi = ȳ + �β1(xi − x̄).

If �β1 is close to 0, �yi and ȳ are similar in size, so we would have SST ≈ RSS.
In this case SSReg would be small. Whereas, if �β1 is not close to 0, then SSReg
is not small. So, SSReg would be a reasonable test statistic for the hypothesis
H0 : β1 = 0. What do small and big mean? As usual, we need to scale the value
by the appropriate factor. The F-statistic is the ratio of the mean regression
sum of squares divided by the mean residual sum of squares.

F =
SSReg/1

RSS/(n − 2)
=

SSReg

�σ2 . (11.7)

Under the null hypothesis H0 : β1 = 0, the sampling distribution of F is
known to be the F-distribution with 1 and n − 2 degrees of freedom.

This allows us to make the following significance test.

F-test for β1 = 0

A significance test for the hypotheses

H0 : β1 = 0, HA : β1 �= 0

can be made with the the test statistic

F =
SSReg

�σ2 .
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Under the null hypothesis, the statistic F has the F-distribution
with 1 and n − 2 degrees of freedom. Larger values of F are
more extreme, so the p-value for this test is computed from
P(F ≥ observed value |H0).

The F-statistic can be rewritten as

F =

�
�β1

SE(�β1)

�2

.

Under the assumption β1 = 0, this is the square of one of the t-distributed
random variables of Equation 11.4. For simple linear regression the two tests
of H0 : β1 = 0, the marginal t-test and the F-test, are equivalent. However, we
will see that with more predictors, the two tests are different.

R2—the coefficient of determination

The decomposition of the total sum of squares into the residual sum of
squares and the regression sum of squares in Equation 11.6 allows us to in-
terpret how well the regression line fits the data. If the regression line fits the
data well, then the residual sum of squares, ∑(yi − �yi)

2, will be small. If there
is a lot of scatter about the regression line, then RSS will be big. To quantify
this, we can divide by the total sum of squares, leading to the definition of
the coefficient of determination:

R2 = 1 − RSS

SST
= 1 − ∑(yi − �yi)

2

∑(yi − ȳi)2 =
∑(�yi − ȳ)2

∑(yi − ȳ)2 . (11.8)

This is close to 1 when the linear regression fit is good and close to 0 when it
is not.

When the simple linear regression model is appropriate this value is in-
terpreted as the proportion of the total response variation explained by the
regression. That is, R2 · 100% of the variation is explained by the regression
line. When R2 is close to 1, most of the variation is explained by the regression
line, and when R2 is close to 0, not much is.

This interpretation is similar to that given for the Pearson correlation coef-
ficient, r, in Chapter 3. This is no coincidence: for the simple linear regression
model r2 = R2.

The adjusted R2 divides the sums of squares by their degrees of freedom.
For the simple regression model, these are n − 2 for RSS and n − 1 for SST.
This is done to penalize models that get better values of R2 by using more
predictors. This is of interest when multiple predictors are used.

no
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Using lm to find values for a regression model

Here we illustrate how R can be used to directly compute these values and,
alternatively, how these values are returned by the lm object and its extractor
methods.

Confidence intervals

For example, based on the distribution of �β0, a 95% confidence interval for
β0 can be found with:

�β0 ± t∗SE(�β0).

Using the values in our example, this could be found with

res.mhr <- lm(maxrate ~ age, data=heartrate)

betahat0 <- coef(res.mhr)[1] # first coefficient
n <- nrow(heartrate)
sigmahat <- sqrt( sum(resid(res.mhr)^2) / (n - 2))
SE <- with(heartrate,

sigmahat*sqrt(sum(age^2) / (n*sum((age - mean(age))^2)))
)

SE

## [1] 2.867

tstar <- qt(1 - 0.05/2, df=n - 2)

betahat0 + c(-1, 1) * tstar * SE

## [1] 203.9 216.2

Standard error

The summary method for lm objects provides most of the values related to the
model, including, for example, the standard error just computed. Find SE in
the Coefficients: part of the output under the column labeled Std. Error.

summary(res.mhr)

##
## Call:
## lm(formula = maxrate ~ age, data = heartrate)
##
## Residuals:
## Min 1Q Median 3Q Max
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## -8.926 -2.538 0.388 3.187 6.624
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 210.048 2.867 73.3 < 2e-16 ***
## age -0.798 0.070 -11.4 3.8e-08 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 4.58 on 13 degrees of freedom
## Multiple R-squared: 0.909,Adjusted R-squared: 0.902
## F-statistic: 130 on 1 and 13 DF, p-value: 3.85e-08

By reading the standard error from this output, a 95% confidence interval
for β1 may be more easily found than the one for β0 above:

betahat1 <- coef(res.mhr)[2] # second coefficient
SE <- 0.06996281 # read from summary
tstar <- qt(1 - 0.05/2, df=n - 2)
betahat1 + c(-1, 1) * tstar * SE

## [1] -0.9489 -0.6466

The two coefficients in this model are returned by the coef method:

coef(res.mhr)

## (Intercept) age
## 210.0485 -0.7977

The coef method called on the summary of the model returns a matrix
with the standard errors included:

coef(summary(res.mhr))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 210.0485 2.86694 73.27 2.124e-18
## age -0.7977 0.06996 -11.40 3.848e-08

which can be used to programmatically extract the standard errors, as with:

coef(summary(res.mhr))["age", "Std. Error"]

## [1] 0.06996

The above shows how to do the work piece-by-piece. If that isn’t of inter-
est, the confint method can do both of these computations directly:
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confint(res.mhr)

## 2.5 % 97.5 %
## (Intercept) 203.8548 216.2421
## age -0.9489 -0.6466

Significance tests

The summary function for lm objects displays more than the standard errors.
For each coefficient a marginal t-test is performed. This is a two-sided hy-
pothesis test of the null hypothesis that βi = 0 against the alternative that
βi �= 0. We see in this case that both are rejected with very low p-values (as
to be expected as we expect an intercept around 220 and slope around −1).
These small p-values are flagged in the output of summary with significance
stars.

Other t-tests are possible. For example, we can test the null hypothesis
that the slope is −1 with the commands

mu0 <- -1
T.obs <- (betahat1 - mu0)/SE
T.obs

## age
## 2.891

2*pt(abs(T.obs), df=n-2, lower.tail=FALSE)

## age
## 0.01262

This is a small p-value, indicating that the model with slope −1 is unlikely
to have produced this data or anything more extreme than it.

Finding �σ2, R2

The estimate for �σ is marked Residual standard error and is labeled with
13 = 15 − 2 degrees of freedom. The degrees of freedom are contained in
the df.residual component of the model object. The estimate for �σ can be
computed directly with:

sigma2 <- sum(resid(res.mhr)^2) / res.mhr$df.residual
sqrt(sigma2) # sigma hat

## [1] 4.578

The value of R2 = cor(age,mhr)ˆ2 is given in the output along with an
adjusted value.
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F-test for β1 = 0

Finally, the F-statistic is calculated. As this is given by (�β1/SE(�β1))
2, it can

be found directly with:

(-0.7595 / 0.0561)^2

## [1] 183.3

The significance test H0 : β1 = 0 with two-sided alternative is performed
and again returns a tiny p-value.

The sum of squares to compute F are also given as the output of the anova
extractor function.

anova(res.mhr)

## Analysis of Variance Table
##
## Response: maxrate
## Df Sum Sq Mean Sq F value Pr(>F)
## age 1 2725 2725 130 3.8e-08 ***
## Residuals 13 272 21
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

These values in the column headed Sum Sq are SSReg and RSS. The total
sum of squares, SST, would be the sum of the two.

A short summary The summary function can feel a bit verbose at times. The
following function will be used in the sequel to tighten the display up to
show just the coefficient information:

short_summary <- function(x) {
x <- summary(x)
cmat <- coef(x)
printCoefmat(cmat)

}

Predicting the response with predict

The function predict is used to make different types of predictions.
A template for its usage with lm objects is

predict(res, newdata=..., interval=..., level = ...)
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The value of res is the output of an lm model. We call this res below, but
we can use any valid name. Any changes to the values of the predictor are
given to the argument newdata in the form of a data frame with names that
match those used in the model formula. The arguments interval and level
are set when prediction or confidence intervals are desired.

The simplest usage, predict(res), returns the predicted values (the �yi’s)
for the data. Predictions for other values of the predictor are specified using
a data frame whose variable names match the variables used in the predictor
side of the model, as this example illustrates:

res.mhr <- lm(maxrate ~ age, data=heartrate)
predict(res.mhr, newdata=data.frame(age=42))

## 1
## 176.5

This finds the predicted maximum heart rate for a 42-year-old. The age
part of the data frame call is important. Variable names in the data frame
supplied to the newdata argument must exactly match the variable names
used when the model object was produced.

To assess whether the simple regression model is appropriate for the data
we use a graphical approach.

Testing the model assumptions

The simple linear regression model, yi = �β0 + �β1xi + �i = µy|x + �i, places
assumptions on the data set that we should verify before proceeding with
any statistical inference. In particular, the linear model should be appropriate
for the mean value of the yi, and the error distribution should be normally
distributed and independent.

Just as we looked at graphical evidence when investigating assumptions
about normally distributed populations when performing a t-test, we will
consider graphical evidence to assess the appropriateness of a regression
model for the data. The plot method for lm (?plot.lm) objects can be used to
plot 6 different diagnostic plots. We consider the four that are produced by
default.2

The biggest key to assessing the aptness of the model is found in the
residuals. The residuals are not an i.i.d. sample, as they sum to 0 and they do
not have the same variance. The standardized residuals rescale the residuals to
have unit variance.

2In using plot to produce the diagnostic plots it is convenient to first issue the command
par(mfrow=c(2,2)). This sets up the plot device to have four panes for graphics added row by
row.
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Figure 11.3: Four graphs showing problematic linear models. Scatterplot in
upper left shows linear model is incorrect. Fitted versus residual plot in upper
right shows a nonlinear trend. Fitted versus residual plot in lower left shows
non-constant variance. Lag plot in lower right shows correlations in error
terms.

Assessing the linear model for the mean

A scatterplot of the data with the regression line can show quickly whether
the linear model seems appropriate for the data. If the general trend is not
linear, either a transformation or a different model is called for. An example
of a cyclical trend (which calls for a transformation of the data) is the upper-
left plot in Figure 11.3 and is made with these commands:

x <- rep(1:10,4)
y <- rnorm(40, mean=5*sin(x), sd=1)

no
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plot(y ~ x)
abline(lm(y ~ x))

When there is more than one predictor variable, a scatterplot will not be
as useful.

A residual plot can also show whether the linear model is appropriate
and can be made with more than one predictor. As well, it can detect small
deviations from the model that may not show up in a scatterplot. The upper-
right plot in Figure 11.3 shows a residual plot that finds a sinusoidal trend
that will not show up in a scatterplot. It was simulated with these commands:

x <- rep(1:10, 4)
y <- rnorm(40, mean=x + 0.05 * sin(x), sd=0.01) # small trend
res <- lm(y ~ x)
plot(fitted(res), resid(res))

The residual plot is one of the four diagnostic plots produced by plot.

Assessing the residuals

The residuals are used to assess whether the error terms in the model are
normally distributed. As mentioned, the residuals are correlated as they add
to 0, we treat them as if they are the actual error terms in the model. For
example, we use either a histogram or, preferably, a quantile-normal plot to
investigate if a normal assumption is appropriate. For the quantile-normal
plot, deviations from a straight line indicate non-normality. One of the diag-
nostic plots produced by plot is a quantile-normal plot of the standardized
residuals. Though normality is not essential for prediction, the sampling dis-
tributions of the coefficients depend on the error terms not being too skewed
or long-tailed.

In addition to normality, an assumption of the model is also that the error
terms have a common variance. A residual plot can show whether this is
the case. When it is, the residuals show scatter about a horizontal line. In
many data sets, the variance increases for larger values of the predictor. The
commands below create a simulation of this. The graph showing the effect is
in the lower-left of Figure 11.3. The absence of equal variance can sometimes
be addressed by transformations or weighted least squares, though we don’t
pursue that here.

x <- rep(1:10, 4)
y <- rnorm(40, mean=1 + 1/2*x, sd=x/10)
res <- lm(y ~ x)
plot(fitted(res), resid(res))

The scale-location plot is one of the four diagnostic plots produced by the
defaults of the plot method. This graphic also shows the residuals, but in

no
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terms of the square root of the absolute value of the standardized residuals.
The graph should show points scattered along the y-axis, as we scan across
the x-axis, but the spread of the scattered points should not get larger or
smaller.

In some data sets, there is a lack of independence in the residuals. For
example, the errors may accumulate. A lag plot, where the data is plotted
against previous values of the data, may be able to show this effect. For
an independent sequence, the lag plot should be scattered, whereas many
dependent sequences will show some pattern. This is illustrated in the lower-
right plot in Figure 11.3, which was made as follows:

x <- rep(1:10, 4)
epsilon <- rnorm(40, mean=0, sd=1)
y <- 1 + 2*x + cumsum(epsilon) # cumsum() correlates errors
res <- lm(y ~ x)
tmp <- resid(res)
n <- length(tmp)
plot(tmp[-n], tmp[-1]) # lag plot

Influential points

As we observed in Chapter 3, the regression line can be greatly influenced by
a single observation that is far from the trend set by the data. The difference
in slopes between the regression line with all the data and the regression line
with the ith point missing will mostly be small, except for influential points.
The Cook’s distance is based on the difference of the predicted values of yi
for a given xi when the point (xi,yi) is and isn’t included in the calculation
of the regression coefficients. Comparing predicted amounts, as opposed to
change in slope, allows the method to generalize to more than one predictor.
The Cook’s distance is computed by the extractor function cooks.distance.

One of the diagnostic plots produced by the default plot method for lm
objects will show the Cook’s distance for the data points plotted using spikes.
Another way to display this information graphically is to make the size of
the points in the scatterplot depend on this distance using the cex argument.
This type of plot is referred to as a bubble plot and is illustrated using the
emissions (UsingR) data set in Figure 11.4. The graphic is made with the
following commands:

res <- lm(CO2 ~ perCapita, emissions)
plot(CO2 ~ perCapita, emissions,

cex=10*sqrt(cooks.distance(res)),
main=expression( # make subscript on C02

paste("bubble plot of ",CO[2],
" emissions by per capita GDP")

))

no
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Figure 11.4: Bubble plot of CO2 emissions by per capita GDP with area of
points proportional to Cook’s distance.

The square root of the distances is used, so the area of the points is pro-
portional to Cook’s distance rather than to the radius.3

For the maximum-heart-rate data, the four diagnostic plots produced by
R with the command plot(res.mhr) are in Figure 11.5.

Prediction intervals

The value of �y can be used to predict two different things: the value of a
single estimate of y for a given x or the average value of many values of y for
a given x. If we think of a model with replication (repeated y’s for a given x,
such as in Figure 11.2), then the difference is clear: one is a prediction for a
given point, the other a prediction for the average of the points.

Statistical inference about the predicted value of y based on the sample is
done with a prediction interval. As y is not a parameter, we don’t call this a
confidence interval. The form of the prediction interval is similar to that of a
confidence interval:

3The argument to main illustrates how to use mathematical notation in the title of a graphic.
See the help page ?plotmath for details.

no
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Figure 11.5: Four diagnostic plots for the maximum-heart-rate data produced
by the extractor function plot.

�y ± t∗SE.

For the prediction interval, the standard error depends on x and is given
by

SE= �σ
�

1 +
1
n
+

(x − x̄)2

sxx
. (11.9)

The value of t∗ comes from the t-distribution with n − 2 degrees of free-
dom.

The prediction interval holds for all x simultaneously. Meaning, there is
a (1 − α)100% chance that a new data point chosen from the model will be
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within these bounds. These values are usually plotted using two lines on the
scatterplot to show the upper and lower limits.

The predict function will return the lower and upper endpoints for each
value of the predictor. We specify interval="prediction" (which can be
shortened) and a confidence level with level. (The default is 0.95.)

For the heart-rate example we have:

pred.res <- predict(res.mhr, int = "pred")

## Warning: predictions on current data refer to _future_ responses

head(pred.res, n=3)

## fit lwr upr
## 1 195.7 185.1 206.3
## 2 191.7 181.3 202.1
## 3 190.1 179.7 200.5

A matrix is returned with columns giving the data we want. We can-
not access these with the data frame notation pred.res$lwr, as the return
value is not a data frame. Rather we can access the columns by name, like
pred.res[,’lwr’], or by column number, as in

head(pred.res[, 2]) # the ’lwr’ column

## 1 2 3 4 5 6
## 185.1 181.3 179.7 171.9 147.2 156.5

We want to plot both the lower and upper limits. In our example, we have
the predicted values for the given values of age. As the age variable is not
sorted, simply plotting will make a real mess. To remedy this, we specify the
values of the age variable for which we make a prediction. We use the values
sort(unique(age)), which gives just the x values in increasing order.

age.sort <- sort(unique(heartrate$age))
pred.res <- predict(res.mhr, newdata = data.frame(age = age.sort),

int="pred")
pred.res[,2]

## 1 2 3 4 5 6 7 8 9 10
## 185.1 184.3 181.3 179.7 172.7 171.9 170.3 168.7 166.3 156.5
## 11 12 13
## 154.8 147.2 141.1

Now we can add the prediction intervals to the scatterplot with the lines
function (matlines offers a one-step alternative). The result is Figure 11.6.
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plot(maxrate ~ age, data=heartrate)
abline(res.mhr)
lines(age.sort, pred.res[,2], lty=2) # lower curve
lines(age.sort, pred.res[,3], lty=2) # upper curve
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Figure 11.6: Regression line with 95% prediction intervals drawn for age ver-
sus maximum heart rate.

There is a slight curve in the lines drawn, which is hinted at in Equa-
tion 11.9. This implies that estimates near the value (x̄, ȳ) have a smaller
variance. This is expected: there is generally more data near this value, so the
variances should be smaller.

Confidence intervals for µy|x

A confidence interval for the mean value of y for a given x is given by

�y ± t∗SE(�y).
Again, t∗ is from the t-distribution with n − 2 degrees of freedom. The

standard error used is now
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SE(�y) = �σ
�

1
n
+

(x − x̄)2

sxx
.

The standard error for the prediction interval differs by an extra term of
plus 1 inside the square root. This may appear minor, but is not. If we had
so much data (large n) that the estimates for the β’s have small variance, we
would not have much uncertainty in predicting the mean amount, but we
would still have uncertainty in predicting a single deviation from the mean
due to the error term in the model.

The values for this confidence interval are also returned by predict. In
this case, we use the argument interval="confidence".

Problems

11.6 The cost of a home is related to the number of bedrooms it has. Suppose
the following table contains data recorded for homes in a given town.

price $300 $250 $400 $550 $317 $389 $425 $289 $389

bedrooms 3 3 4 5 4 3 6 3 4

Make a scatterplot, and fit the data with a regression line. On the same
graph, test the hypothesis that an extra bedroom is worth $60,000 versus the
alternative that it is worth more.

11.7 The more beer you drink, the more your blood alcohol level (BAL) rises.
The following table contains a data set on beer consumption.

beers 5 2 9 8 3 7 3 5 3 5

BAL 0.10 0.03 0.19 0.12 0.04 0.095 0.07 0.06 0.02 0.05

Make a scatterplot with a regression line and 95% prediction intervals
drawn. Test the hypothesis that one beer raises your BAL by 0.02% against
the alternative that it raises it less. (A formula from wikipedia.org specifies
a model for the mean with

0.906 · d · 1.2
(0.49 + 0.09 · 1a male) · w

− 0.017 · t

where d is the number of drinks, w the weight in kilograms, and t the time
since drinking.)

11.8 For the same blood-alcohol data as the previous exercise perform a
significance test that the intercept is 0 with a two-sided alternative.
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11.9 The lapse rate is the rate at which temperature drops as you increase ele-
vation. Some hardy students were interested in checking empirically whether
the lapse rate of 9.8°C/km was accurate. To investigate, they grabbed their
thermometers and their Suunto® wrist altimeters and recorded the data from
their hike in this table:

elevation (ft) 600 1000 1250 1600 1800 2100 2500 2900

temperature (°F) 56 54 56 50 47 49 47 45

Draw a scatterplot with regression line and investigate whether the lapse
rate is 9.8°C/km. (It helps to convert to the rate of change °F per feet, which
is 5.34 degrees per 1,000 feet.) Test the hypothesis that the lapse rate is 5.34
degrees per 1,000 feet against a two-sided alternative.

11.10 For the homedata (UsingR) data set, find the regression equation to
predict the year-2000 value of a home from its year-1970 value. Make a pre-
diction for an $80,000 home in 1970. Comment on the appropriateness of the
regression model by investigating the residuals.

11.11 A seal population is counted over a ten-year period. The counts are
reported in this table:

year pop. year pop. year pop year pop

1952 724 1955 1,392 1958 1,212 1961 1,980
1953 176 1956 1,392 1959 1,672 1962 2,116
1954 920 1957 1,448 1960 2,068

Make a scatterplot with population on the y-axis and year on the x-axis.
Find the regression line. What is the predicted value for 1963? Would you
use this to predict the population in 2014? Why or why not?

11.12 The deflection (UsingR) data set contains deflection measurements for
various loads. Fit a linear model to Deflection as a function of load. Plot the
data and the regression line. How well does the line fit? Investigate with a
residual plot.

11.13 The alaska.pipeline (UsingR) data set contains measurements of de-
fects on the Alaska pipeline that are taken first in the field and then in the
laboratory. The measurements are done in six batches. Fit a linear model for
the lab-defect size as modeled by the field-defect size. Find the coefficients.
Discuss the appropriateness of the model.

11.14 In athletic events in which people of various ages participate, perfor-
mance is sometimes related to age. Multiplying factors are used to compare
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the performance of a person of a given age to another person of a differ-
ent age. The data set best.times (UsingR) features world records by age and
distance in track and field.

We split the records by distance, allowing us to compare the factors for
several distances.

by.dist <- split(best.times, as.factor(best.times$Dist))

This returns a list of data frames, one for each distance. We can plot the
times in the 800-meter run:

plot(Time ~ age, by.dist[["800"]])

It is actually better to apply scale first, so that we can compare times.
Through age 70, a linear regression model seems to fit. It can be found

with

lm(scale(Time) ~ age, by.dist[["800"]], subset = age < 70)

##
## Call:
## lm(formula = scale(Time) ~ age, data = by.dist[["800"]], subset = age <
## 70)
##
## Coefficients:
## (Intercept) age
## -1.2933 0.0136

Using the above technique, compare the data for the 100-meter dash, the
400-meter dash, and the 10,000-meter run. Are the slopes similar?

11.15 The galton (UsingR) data set contains data collected by Francis Galton
in 1885 concerning the influence a parent’s height has on a child’s height. Fit
a linear model modeling a child’s height by his parents’. Do a test of signifi-
cance to see whether β1 equals 1 against a two-sided alternative.

11.16 Find and plot both the prediction and the confidence intervals for the
heart-rate model: res.mhr <- lm(maxrate ~ age, data=heartrate).

11.17 The alaska.pipeline (UsingR) data set appears appropriate for a linear
model, but the assumption of equal variances does not seem appropriate. A
log-transformation of each variable does seem to have equal variances. Fit
the model

log(lab.defect) = β0 + β1 · log(field.defect) + �.
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Investigate the residuals and determine whether the assumption of equal
variance seems appropriate.

11.18 The following commands will simulate the regression model yi = 1 +
2xi + �i:

m <- 200
x <- rep(1:10, 4)
res <- replicate(m, {
y <- rnorm(40, 1 + 2*x, 3)
coef(lm(y ~ x))

})
plot(res[1,], res[2,])

Run the simulation and comment on the shape of the scatterplot. What
does it say about the correlation between �β0 and �β1?

11.19 In a simple linear regression, confidence intervals for β0 and β1 are
given separately in terms of the t-distribution as �βi ± t∗SE(�βi). They can also
be found jointly, giving a confidence ellipse for the parameters as a pair. This
can be found easily in R with the ellipse package.4

If res is the result of the lm function, then plot(ellipse(res), type="l")
will draw the confidence ellipse.

For the deflection (UsingR) data set, find the confidence ellipse for
Deflection modeled by Load.

11.20 The linear regression model yi = µy|xi
+ �i is flexible enough to ac-

commodate some of the other models already encountered. The basic t-test
is modeled by y ~ 1. The paired t-test becomes yi = µ + xi + �i which can be
modeled with y ~ offset(x). The two-sample t-test can be modeled with a
predictor which is 1 for one population and 0 for the other via y ~ x.

Let’s see the latter. The normtemp (UsingR) data set has normal body tem-
perature measurements for both men and women. A two-sample t-test can
be employed to perform a significance test of difference between gender, via:

t.test(temperature ~ factor(gender), data=normtemp)

Find the corresponding p-value in the output of this model:

lm(temperature ~ factor(gender), data=normtemp)

4The ellipse package is not part of the standard R installation, but it is on CRAN. You can
install it with the command install.packages("ellipse").
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11.3 Multiple linear regression

Multiple linear regression allows for more than one regressor to predict the
value of y. Lots of possibilities exist. These regressors may be separate vari-
ables, products of separate variables, powers of the same variable, or func-
tions of the same variable. In the next chapter, we will consider regressors
that are not numeric but categorical. They all fit together in the same model,
but there are additional details. We see, though, that much of the background
for the simple linear regression model carries over to the multiple regression
model.

Types of models

Let y be a response variable and let x1, x2, . . . , xp be p variables that we will
use for predictors. For each variable we have n values recorded. The multiple
regression model we discuss here is

yi = β0 + β1x1i + · · ·+ βpxpi + �i.

There are p + 1 parameters in the model labeled β0, β1, . . . , βp. They ap-
pear in a linear manner, just like a slope or intercept in the equation of a line.
The xi’s are predictor variables, or covariates. They may be random; they
may be related, such as powers of each other; or they may be correlated. As
before, it is assumed that the �i values are an i.i.d. sample from a normal dis-
tribution with mean 0 and unknown variance σ2. In terms of the y variable,
the values yi are an independent sample from a normal distribution with
mean β0 + β1x1i + · · ·+ βpxpi and common variance σ2. If the x variables are
random, this is true after conditioning on their values.

Interpretation For the simple linear regression model, the slope parameter,
β1, is easily interpreted, as one-unit change in the predictor variable will cor-
respond to a predicted change in the mean response by β1 units. For the mul-
tiple regression model, a similar interpretation is possible: a one-unit change
in the ith predictor corresponds to a βi-unit change in the predicted mean
response if the other predictors are held constant. This is not always possible in
practice.

• Example 11.1: What influences a baby’s birth weight?
A child’s birth weight depends on many things, among them the parents’
genetic makeup, gestation period, and mother’s activities during pregnancy.
The babies (UsingR) data set lets us investigate some of these relationships.

This data set contains many variables to consider. We first look at the
quantitative variables as predictors. These are gestation period; mother’s age,
height, and weight; and father’s age, height, and weight.

A first linear model might incorporate all of these at once:
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wt = β0 + β1 · gestation + β2 · mother’s age + · · ·+ β7 · father’s weight + �i.

Why should this have a linear model? It seems intuitive that birth weight
would vary monotonically with the variables, so a linear model might be a
fairly good approximation. We’ll want to look at some plots to make sure our
model seems appropriate. ••

• Example 11.2: Polynomial regression
In 1609, Galileo proved mathematically that the horizontal distance traveled
by an object with an initial horizontal velocity is a parabola. He based his
insight on an experimental setup consisting of a ball placed at a certain height
on a ramp and then released. The distance traveled was then measured. This
experiment was chosen to reduce the effects of friction.5 The data consists of
two variables. Let’s call them y for distance traveled and x for initial height.
Galileo may have considered any of these polynomial models:

yi = β0 + β1xi + �i,

yi = β0 + β1xi + β2x2
i + �i, or

yi = β0 + β1xi + β2x2
i + β3x3

i + �i.

The �i would cover error terms that are presumably independent and nor-
mally distributed. The quadratic model (the second model) is correct under
perfect conditions, as Galileo demonstrated, but the data may suggest a dif-
ferent model if the conditions are not perfect. ••

• Example 11.3: Predicting classroom performance
College admissions offices are faced with the problem of predicting future
performance based on a collection of measures, such as grade-point average
and standardized test scores. These values may be correlated. There may also
be other variables that describe why a student does well, such as type of high
school attended or student’s work ethic.

Initial student placement is also a big issue. If a student does not place
into the right class, he may become bored and leave the school. Successful
placement is key to retention. For New York City high school graduates,
available at time of placement are SAT scores and Regents Exam scores. High
school grade-point average may be unreliable or unavailable.

The data set stud.recs (UsingR) contains test scores and initial grades in
a math class for several randomly selected students. What can we predict
about the initial grade based on the standardized scores?

5This example appears in Ramsey and Schafer [49], where a schematic of the experimental
apparatus is drawn.
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An initial model might be to fit a linear model for grade with all the other
terms included. Other restricted models might be appropriate. For example,
are the verbal SAT scores useful in predicting grade performance in a future
math class? ••

Fitting the multiple regression model using lm

As seen previously, the method of least squares is used to estimate the param-
eters in the multiple regression model. We don’t give formulas for computing
the �β’s but note that, since there are p + 1 estimated parameters, the estimate
for the variance changes to

�σ2 =
RSS

n − (p + 1)
.

To find these estimates in R, again the lm function is used. The syntax for
the model formula varies depending on the type of terms in the model. For
these problems, we use + to add terms to a model, - to drop terms, and I to
insulate terms so that the usual math notations apply.

For example, if x, y, and z are variables, then the following statistical
models have the given R counterparts:

zi = β0 + β1xi + β2yi + �i is expressed as z ~ x + y

zi = β0 + β1xi + β2x2
i + �i is expressed as z ~ x + I(xˆ2)

Once the model is specified, the lm function follows this familiar format:

lm(formula, data=..., subset=...)

To illustrate with an artificial example, we simulate the relationship zi =
β0 + β1xi + β2yi + �i and then find the estimated coefficients:

x <- 1:10
y <- rchisq(10,3)
z <- 1 + x + y + rnorm(10)
lm(z ~ x + y)

##
## Call:
## lm(formula = z ~ x + y)
##
## Coefficients:
## (Intercept) x y
## -0.367 1.179 0.990
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The output of lm stores much more than is seen initially (which is just
the formula and the estimates for the coefficients). It is recommended that
the return value be stored. Afterward, the different extractor functions can
be used to view the results.

• Example 11.4: Finding the regression estimates for baby’s birth weight
Fitting the birth-weight model is straightforward. The basic model formula
is

wt ~ gestation + age + ht + wt1 + dage + dht + dwt

We’ve seen with this data set that the variables have some missing values that
are coded not with NA but with very large values that are obvious when plot-
ted, but not when we blindly use the functions. In particular, gestation should
be less than 350 days, mother’s age and height less than 99, and weight less
than 999, etc. We can avoid these cases by using the subset argument as il-
lustrated. Recall that we combine logical expressions with & for “and” and |
for “or.”

res.lm <- lm(wt ~ gestation + age + ht + wt1 + dage + dht + dwt,
data=babies,
subset=gestation < 350 & age < 99 & ht < 99 & wt1 < 999 &

dage < 99 & dht < 99 & dwt < 999)
res.lm

##
## Call:
## lm(formula = wt ~ gestation + age + ht + wt1 + dage + dht + dwt,
## data = babies, subset = gestation < 350 & age < 99 & ht <
## 99 & wt1 < 999 & dage < 99 & dht < 99 & dwt < 999)
##
## Coefficients:
## (Intercept) gestation age ht wt1
## -105.4576 0.4625 0.1384 1.2161 0.0289
## dage dht dwt
## 0.0590 -0.0663 0.0782

A residual plot (not shown) shows nothing too unusual:

plot(fitted(res.lm), resid(res.lm))

The diagnostic plots found with plot(res.lm) indicate that observation
261 might be a problem. Looking at babies[261,], it appears that this case is
an outlier, as it has a very short gestation period. ••
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Using update with model formulas

When comparing models, we may be interested in adding or subtracting a
term and refitting. Rather than typing in the entire model formula again, R
provides a way to add or drop terms from a model and have the new model
fit. This process is called updating and is done with the update function. The
usage is

update(model.object, formula = . ~ . + new.terms - old.terms)

The model.object is the output of some modeling command, such as lm.
The formula argument uses a . to represent the previous value. In the tem-
plate above, the . to the left of the ~ indicates that the previous left side of the
model formula should be reused. The right-hand-side . refers to the previ-
ous right-hand side. In the template, the +new.terms means to add term and
-old.terms is used to drop terms.

• Example 11.5: Discovery of the parabolic trajectory
The data set galileo (UsingR) contains two variables measured by Galileo
(described previously). One is the initial height and one the horizontal dis-
tance traveled.

A plot of the data illustrates why Galileo may have thought to prove that
the correct shape is described by a parabola. Clearly a straight line does not fit
the data well. However, with modern computers, we can investigate whether
a cubic term is warranted for this data.

To do so we fit three polynomial models. The update function is used to
add terms to the previous model to give the next model. To avoid a different
interpretation of ˆ, the powers are insulated with I.

init.h <- c(600,700,800,950,1100,1300,1500)
h.d <- c(253, 337, 395, 451, 495, 534, 573)
res.lm <- lm(h.d ~ init.h)
res.lm2 <- update(res.lm, . ~ . + I(init.h^2))
res.lm3 <- update(res.lm2, . ~ . + I(init.h^3))

To plot these, we will use curve, but first we define a function which
evaluates a polynomial given its coefficients:

polynomial <- Vectorize(function(x, ps) {
n <- length(ps)
sum(ps*x^(1:n-1))

}, "x")

Then we can plot as follows (Figure 11.7).
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plot(h.d ~ init.h)
curve(polynomial(x, coef(res.lm )), add=TRUE, lty=1)
curve(polynomial(x, coef(res.lm2)), add=TRUE, lty=2)
curve(polynomial(x, coef(res.lm3)), add=TRUE, lty=3)
legend(1200, 400, legend=c("linear", "quadratic", "cubic"), lty=1:3)

The linear model is a poor fit, but both the quadratic and cubic fits seem
reasonable. ••
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Figure 11.7: Three polynomial models fit to the Galileo data.

Interpreting the regression parameters

As mentioned, interpretation in simple regression is usually straightforward.
Changes in the predictor variable correspond to changes in the response vari-
able in a linear manner: a unit change in the predictor corresponds to a �β1-
unit change in the response.

However, in multiple regression this picture may not be applicable, as
we may not be able to change just a single variable. As well, when more
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variables are added to a model, if the variables are correlated then the sign
of the coefficients can change, leading to a different interpretation.

The language often used is that we “control” the other variables while
seeking a primary predictor variable.

• Example 11.6: Does taller mean higher paid?
A University of Florida press release from October 16, 2003, read:

“Height matters for career success. . . ”
The reported study, which controlled for gender, weight, and

age, found that mere inches cost thousands of dollars. Each inch
in height amounted to about $789 more a year in pay, the study
found.

The mathematical model mentioned would be

pay = β0 + β1 height + β2 gender + β3 weight + β4 age + �.

(In the next chapter we see how to interpret the term involving the categorical
variable gender.) The data gives rise to the estimate �β1 = 789. The authors
interpret this to mean that each extra inch of height corresponds to a $789
increase in expected pay. So someone who is 4 inches taller, say 6 feet versus
5 feet 8 inches, would be expected to earn $3,156 more annually. (�y is used
to predict expected values.) The word “controlled” means that they included
these variables in the model.

There are few caveats to this interpretation. First, unlike in a science ex-
periment, where we may be able to specify the value of a variable, a person
cannot simply grow an inch to see if his salary goes up. As well, it isn’t re-
alistic to imagine a person growing an inch without some change in their
weight, say. So it is hard to hold all other variables equal when interpreting
the coefficient. Further, as this is an observational study, causal interpreta-
tions are not necessarily valid. ••

Statistical inferences

As in the simple linear regression case, if the model is correct, statistical
inference can be made about the coefficients. In general, the estimators for
a linear model are unbiased and normally distributed; from this, t-tests and
confidence intervals can be constructed for the estimators, once we learn the
standard errors. As before, these are output by the summary function.

• Example 11.7: Galileo, continued
For the Galileo data example, the summary of the quadratic fit contains
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short_summary(res.lm2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.40e+02 6.90e+01 -3.48 0.0253 *
## init.h 1.05e+00 1.41e-01 7.48 0.0017 **
## I(init.h^2) -3.44e-04 6.68e-05 -5.15 0.0068 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

For each �β, the standard errors are given, as is the marginal t-test, which
tests for the null hypothesis that the �β is 0. All three have small p-values and
are flagged as such with significance stars.

Finding a confidence interval for the parameters is straightforward, as
the values (�βi − βi)/SE(�βi) have a t-distribution with n − (p + 1) degrees of
freedom if the linear model applies.

For example, a 95% confidence interval for β1 would be

alpha <- 0.05
tstar <- qt(1 - alpha/2, df=4) # n=7; p=2; df=n-(p+1)
beta1 <- 1.05
SE <- 0.141
beta1 + c(-1,1 ) * tstar * SE

## [1] 0.6585 1.4415

••

Model selection

Modeling is done for many reasons. One is to shine the focus on the impor-
tant predictors to explain as much variation in the response as possible while
avoiding the noise of unimportant factors. Doing this requires some means
for determining when a predictor variable contributes sufficiently to the de-
scription of the response as to be warranted. For this we discuss a few criteria
below that are easily used within R.

Before proceeding with methods to remove variables from considera-
tion, we paraphrase some practical, general principles on building regression
models for prediction provided in Section 4.6 of [25]:

• Include all input variables that might be expected to be important in
predicting the response.

• Sometimes, predictors can be combined into other variables. For exam-
ple, using BMI instead of both height and weight.
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• For decisions on which variables to exclude:

– If a predictor is not statistically significant and has the expected
sign it is generally fine to leave it in (though the methods below
will exclude it).

– Consider removing predictors which are not statistically signifi-
cant and do not have the expected sign.

– If a predictor is statistically significant and has the expected sign,
leave it in.

– If a predictor is statistically significant and does not have the ex-
pected sign, then think hard about its inclusion. It might point to
lurking variables, or underlying correlations with other predictors.

Partial F-test

The partial F-test is used to discriminate between two models with one being
nested in the other. For example,

yi = β0 + β1x1i + · · ·+ βkxki + �i (11.10)
yi = β0 + β1x1i + · · ·+ βkxki + βk+1x(k+1)i + · · ·+ βpxpi + �i.

The first model has k + 1 parameters, and the second has p + 1 with p > k
(not counting σ). Recall that the residual sum of squares, RSS, measures the
variation between the data and the model. For the model with p predictors,
RSS(p) can be no more than RSS(k) for the model with k predictors. Call the
difference the extra sum of squares.

If the new parameters are not really important, then there should be little
difference between the sums of squares when computed with or without the
new parameters. If they are important, then there should be a big difference.
To measure big or small, we can divide by the residual sum of squares for
the full model. That is,

RSS(k)− RSS(p)
RSS(p)

should measure the influence of the extra parameters. If we divide the extra
sum of squares by p − k and the residual sum of squares by n − (p + 1) (the
respective degrees of freedom), then the statistic becomes

F =
(RSS(k)− RSS(p))/(p − k)

RSS(p)/(n − (p + 1)))
=

(RSS(k)− RSS(p))/(p − k)
�σ2 . (11.11)

This statistic is actually a more general example of that in Equation 11.7
and has a similar sampling distribution. Under the null hypothesis that the
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extra β’s are 0 (βk+1 = · · · = βp = 0), and the �i are i.i.d. with a Normal(0,σ2)
distribution, F will have the F-distribution with p− k and n− (p+ 1) degrees
of freedom.

This leads to the following significance test.

Partial F-test for null hypothesis of no effect

For the nested models of Equation 11.10, a significance test
for the hypotheses

H0 : βk+1 = βk+2 = · · ·= βp = 0 and HA : at least one β j �= 0 for j> k

can be performed with the test statistic (11.11):

F =
extra sum of squares/(p − k)

�σ2 .

Under H0, F has the F-distribution with p − k and n − (p + 1)
degrees of freedom. Large values of F are in the direction of
the alternative. This test is called the partial F-test.

The anova function will perform the partial F-test. If res.lm1 and res.lm2
are the return values of two nested models, then

anova(res.lm1, res.lm2)

will perform the test and produce an analysis of variance table.

• Example 11.8: Discovery of the parabolic trajectory revisited
In Example 11.3 we fit the data with three polynomials, graphing each. Re-
ferring to Figure 11.7, we see that the parabola and cubic clearly fit better
than the linear. But which of those two fits better? We use the partial F-test
to determine whether the extra cubic term is significant.

To do this, we use the anova function on the two results res.lm2 and
res.lm3. This yields

anova(res.lm2,res.lm3)

## Analysis of Variance Table
##
## Model 1: h.d ~ init.h + I(init.h^2)
## Model 2: h.d ~ init.h + I(init.h^2) + I(init.h^3)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 4 744
## 2 3 48 1 696 43.3 0.0072 **
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## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The F-test is significant (p = 0.0072), indicating that the null hypothesis
(β3 = 0) does not describe the data well. This suggests that the underlying
relationship from Galileo’s data is cubic and not quadratic. Perhaps the ap-
paratus introduced drag. ••

The Akaike information criterion

In the partial F-test, the trade-off between adding more parameters to im-
prove the model fit and making a more complex model appears in the
n − (p + 1) divisor. Another common criterion with this trade-off is Akaike’s
information criterion (AIC). The AIC is computed in R with the AIC extractor
function. The details of the statistic involve the likelihood function, a more
advanced concept, but the usage is straightforward: models with lower AICs
are preferred. An advantage to the AIC is that it can be used to compare
models that are not nested, a restriction of the partial F-test.

The extractor function AIC will compute the value for a given model, but
the convenient stepAIC function from the MASS package will step through the
submodels and do the comparisons for us.

• Example 11.9: Predicting grades based on standardized tests
The data set stud.recs (UsingR) contains five standardized test scores and a
numeric value for the initial grade in a subsequent math course. The goal is
to use the test-score data to predict the grade that a student will get. If the
grade is predicted to be low, perhaps an easier class should be recommended.

First, we view the data using paired scatterplots

pairs(stud.recs)

The figure (not shown) indicates strong correlations among the variables.
We begin by fitting the entire model. In this case, the convenient . syntax

on the right-hand side is used to indicate all the remaining variables.

d <- subset(stud.recs, select=-letter.grade)
res.lm <- lm(num.grade ~ ., data = d)
res.lm

##
## Call:
## lm(formula = num.grade ~ ., data = d)
##
## Coefficients:

no
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## (Intercept) seq.1 seq.2 seq.3 sat.v
## -0.73953 -0.00394 -0.00272 0.01565 -0.00125
## sat.m
## 0.00590

Some terms are negative, which seems odd. (Why?) Looking at the sum-
mary of the regression model we have

short_summary(res.lm)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.73953 1.21128 -0.61 0.543
## seq.1 -0.00394 0.01457 -0.27 0.787
## seq.2 -0.00272 0.01503 -0.18 0.857
## seq.3 0.01565 0.00941 1.66 0.099 .
## sat.v -0.00125 0.00163 -0.77 0.443
## sat.m 0.00590 0.00267 2.21 0.029 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The marginal t-tests for whether the given parameter is 0 or not are “re-
jected” only for the seq.3 (for this sample of students, sequential 3 was the
last high school test taken) and sat.m (the math SAT score). It is important
to remember that these are tests concerning whether the value is 0 given the
other predictors. They can change if correlated predictors are removed.

The stepAIC function can step through the various submodels and rank
them by AIC. This gives

library(MASS) # load in MASS package for stepAIC
stepAIC(res.lm, trace=0) # trace=0 suppresses intermediate output

##
## Call:
## lm(formula = num.grade ~ seq.3 + sat.m, data = d)
##
## Coefficients:
## (Intercept) seq.3 sat.m
## -1.14078 0.01371 0.00479

The submodel with just two predictors is selected. As expected, the verbal
scores on the SAT are not a useful indicator of performance. ••
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Problems

11.21 Following the example with Galileo’s data, fit a fourth-degree polyno-
mial to the galileo (UsingR) data and compare to the cubic polynomial using
a partial F-test. Is the new coefficient significant?

11.22 For the data set trees, model the Volume by the Girth and Height vari-
ables. Does the model fit the data well?

11.23 The data set MLBattend (UsingR) contains attendance data for Major
League Baseball for the years 1969 to 2000. Fit a linear model of attendance
modeled by year, runs.scored, wins, and games.behind. Which variables are
flagged as significant? Look at the diagnostic plots and comment on the va-
lidity of the model.

11.24 For the deflection (UsingR) data set, fit the quadratic model

Deflection= β0 + β1Load+ β2Load
2 + �.

How well does this model fit the data? Compare to the linear model.

11.25 The data set kid.weights contains age, weight, and height measure-
ments for several children. Fit the linear model

weight= β0 + β1age+ β2height+ β3height
2 + β4height

3 + β5height
4

Use the partial F-test to select between this model and the nested models
found by using only first-, second-, and third-degree polynomials for height.

11.26 The data set fat (UsingR) contains several body measurements that
can be done using a scale and a tape measure. These can be used to predict
the body-fat percentage (body.fat). Measuring body fat requires a special
apparatus; if our resulting model fits well, we have a low-cost alternative.

Fit the variable body.fat using each of the variables age, weight, height,
BMI, neck, chest, abdomen, hip, thigh, knee, ankle, bicep, forearm, and wrist.
Use the stepAIC function to select a submodel. For this submodel, what is
the adjusted R2?

11.27 The data set Cars93 (MASS) contains data on cars sold in the United
States in the year 1993. Fit a regression model with MPG.city modeled by the
numeric variables EngineSize, Weight, Passengers, and price. Which vari-
ables are marked as statistically significant by the marginal t-tests? Which
model is selected by the AIC?

11.28 We can simulate the data to see how often the partial F-test or AIC
works. For example, a single simulation can be done with the commands
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x <- 1:10
y <- rnorm(10, 1 + 2*x + 3*x^2, 4)
require(MASS)
stepAIC(lm(y ~ x + I(x^2)), trace=0)

##
## Call:
## lm(formula = y ~ x + I(x^2))
##
## Coefficients:
## (Intercept) x I(x^2)
## -0.583 3.494 2.846

Do a few simulations to see how often the correct model is selected.

11.29 The data set baycheck (UsingR) contains estimated populations for a
variety of Bay Checkerspot butterflies near California. A common model for
population dynamics is the Ricker model, for which t is time in years:

Nt+1 = aNtebNt Wt,

where a and b are parameters and Wt is a lognormal multiplicative error. This
can be turned into a regression model by dividing by Nt and then taking logs
of both sides to give

log(
Nt+1

Nt
) = log(a) + bNt + �t.

Let yt be the left-hand side. This may be written as

yt = r(1 − Nt

K
) + �t,

because r can be interpreted as an unconstrained growth rate and K as a
carrying capacity.

Fit the model to the baycheck data set and find values for r and K. To find
yt you can do the following:

d <- with(baycheck, {
n <- length(year)
yt <- log(Nt[-1]/Nt[-n])
nt <- Nt[-n]
data.frame(yt, nt)

})

Recall that a negative index means all but that index.


