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Analysis of variance

Analysis of variance, ANOVA, is a method of comparing means across sam-
ples based on variations from the mean. We begin by illustrating an ANOVA
carried out in the traditional way, but we will see that the ANOVA model is
just a special form of the linear model discussed in the previous chapter and
R provides a common interface.

12.1 One-way ANOVA

A one-way analysis of variance is a generalization of the t-test for two in-
dependent samples, allowing us to compare population means for several
independent samples. Suppose we have k populations of interest. From each
we take a random sample. These samples are independent if the knowledge
of one sample does not effect the distribution of another. Notationally, for the
ith sample, let xi1, xi2, . . . , xini designate the sample values.

The one-way analysis of variance applies to normally distributed popula-
tions. Suppose the mean of the ith population is µi and its standard deviation
is σi. We use a σ if these are equivalent across the groups. A statistical model
for the data with a common standard deviation is

xij = µi + �ij,

where the error terms, �ij, are independent with Normal(0,σ) distribution.

• Example 12.1: Number of calories consumed by month
Consider 15 subjects split at random into three groups. Each group is as-
signed a month. For each group we record the number of calories consumed
on a randomly chosen day. Figure 12.1 shows the data. We assume that the
amounts consumed are normally distributed with common variance but per-
haps different means. From the figure, we see that there appears to be more
clustering around the means for each month than around the grand mean or
mean for all the data. Perhaps more calories are consumed in the winter?

The goal of one-way analysis of variance is to decide whether the dif-
ference in the sample means is indicative of a difference in the population
means or is attributable to sampling variation. ••
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Figure 12.1: Amount of calories consumed by subjects for different months.
Sample means are marked, as is the grand mean. Are the differences in the
monthly means due to sampling variation or seasonal differences?

This problem is approached as a significance test. Let the hypotheses be

H0 : µ1 = µ2 = · · · = µk, HA : µi �= µj for at least one pair i and j.

A test statistic is formulated that compares the variations within a single
group to those among the groups.

Let x̄ be the grand mean, or mean of all the data, and x̄i the mean for the
ith sample. Then the total sum of squares is given by

SST= ∑
i

∑
j
(xij − x̄)2.

This measures the amount of variation from the center of all the data.
An analysis of variance breaks SST up into two sums:

SST= ∑
i

∑
j
(xij − x̄i)

2 + ∑
i

ni(x̄i − x̄)2. (12.1)
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The first sum is called the error sum of squares, or SSE. The interior sum,
∑j(xij − x̄i)

2, measures the variation within the ith group. The SSE is then a
measure of the within-group variability. The second term in (12.1) is called
the treatment sum of squares (SSTr). The word treatment comes from medical
experiments where the population mean models the effect of some treatment.
The SSTr compares the means for each group, x̄i, with the grand mean, x̄. It
measures the variability among the means of the samples. We can re-express
Equation 12.1 as

SST= SSE+ SSTr.

From looking at the data in Figure 12.1 we expect that the SSE is smaller
than the SST, as there appears to be more variation among groups than
within groups. If the data came from a common mean, then we would expect
SSE and SST to be roughly the same. If SSE and SST are much different, it
would be evidence against the null hypothesis. How can we tell whether the
differences are due to the null hypothesis being false or merely to sampling
variation? As usual, we tell by finding a test statistic that can discriminate.

Based on the above observation, a natural test statistic to test whether
µ1 = µ2 = · · ·= µk would be to consider the value SST− SSE= SSTr. “Large”
values would be in the direction of the alternative. The F-statistic this com-
parison, but divides by the error sum of squares.

F =
SSTr/(k − 1)
SSE/(n − k)

, (12.2)

Large values are still consistent with a difference in the means. To get
the proper scale, each term is divided by its respective degrees of freedom,
yielding the mean sum of squares. The degrees of freedom for the total sum
of squares are n − 1. For the SSE the degrees of freedom are n − k, so the
degrees of freedom for SSTr are k − 1.

Under the assumption that the data is normally distributed with com-
mon mean and variance, this statistic will have a known distribution: the F-
distribution with k − 1 and n − k degrees of freedom. This is a consequence
of the partial F-test discussed in Chapter 11.1

The one-way analysis-of-variance significance test

Suppose we have k independent, i.i.d. samples from popula-
tions with Normal(µi,σ) distributions, i = 1,2, . . . ,k. A signifi-
cance test of

H0 : µ1 = µ2 = · · ·= µk, HA : µi �= µj for at least one pair, i and j,

1This can be shown by identifying RSS(k) with the total sum of squares and RSS(p) with
SSE in (11.11) and simplifying.
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can be performed with test statistic

F =
SST/(k − 1)
SSE/(n − k)

.

Under H0, F has the F-distribution with k − 1 and n − k
degrees of freedom. The p-value is calculated from P(F ≥
observed value |H0).

The R function oneway.test will perform this significance test.

• Example 12.2: Number of calories consumed by month, continued
The one-way test can be applied to the example on caloric intake. The two
sums can be calculated directly as follows:

may <- c(2166, 1568, 2233, 1882, 2019)
sep <- c(2279, 2075, 2131, 2009, 1793)
dec <- c(2226, 2154, 2583, 2010, 2190)
#
xbar <- mean(c(may, sep, dec))
SST <- (15-1) * var(c(may, sep, dec)) # (n-1) * var(.) is SST
SSE <- (5-1) * var(may) + (5-1) * var(sep) + (5-1) * var(dec)
SSTr <- 5 * ((mean(may) - xbar)^2 + (mean(sep) - xbar)^2 +

(mean(dec) - xbar)^2)
#
c(SST=SST, SSTr=SSTr, SSE=SSE)

## SST SSTr SSE
## 761384 174664 586720

#
n <- 15; k <- 3
F.obs = (SSTr/(k-1)) / (SSE/(n-k))
F.obs

## [1] 1.786

pf(F.obs, df1=k-1, df2=n-k, lower.tail=FALSE)

## [1] 0.2094

We get a p-value that is not significant. Despite the graphical evidence,
the differences can reasonably be explained by sampling variation. ••

SSTr
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Using R’s model formulas to specify ANOVA models

The calculations to perform an analysis of variance need not be so compli-
cated, as R has functions to compute the values desired. These functions use
model formulas. If x stores all the data and f is a factor indicating which
group the data value belongs to, then

x ~ f

represents the statistical model

xij = µi + �ij.

The default behavior for plot of the model formula x ~ f was to make a
boxplot. This is because this graphic easily allows for comparison of centers
for multiple samples. The dot plot in Figure 12.1 is good for a small data set,
but the boxplot is preferred for larger data sets.

Using oneway.test to perform ANOVA

The function oneway.test is used as

oneway.test(x ~ f, data=..., var.equal=FALSE)

As with the t.test function, the argument var.equal is set to TRUE if appro-
priate. By default it is FALSE.

Before using oneway.test with our example of caloric intake, we put the
data into the appropriate form: a data vector containing the values and a
factor indicating the sample the corresponding value is from. This can be
achieved with stack.

d <- stack(list(may=may, sep=sep, dec=dec)) # need names for list
names(d) # two variables

## [1] "values" "ind"

oneway.test(values ~ ind, data=d, var.equal=TRUE)

##
## One-way analysis of means
##
## data: values and ind
## F = 1.786, num df = 2, denom df = 12, p-value = 0.2094

We get the same p-value as in our previous calculation, but with much
less effort.



12.1. ONE-WAY ANOVA 409

Using aov for ANOVA

The alternative aov function will also perform an analysis of variance. It re-
turns a model object similar to lm but has different-looking outputs for the
print and summary extractor functions. These are analysis-of-variance tables
that are typical of other computer software and statistics books.

Again, it is called with a model formula.

res <- aov(values ~ ind, data = d)
res

## Call:
## aov(formula = values ~ ind, data = d)
##
## Terms:
## ind Residuals
## Sum of Squares 174664 586720
## Deg. of Freedom 2 12
##
## Residual standard error: 221.1
## Estimated effects may be unbalanced

The function returns the two sums of squares calculated in Example 12.1
with their degrees of freedom. The Residual standard error, �σ, is found by
the square root of RSS/(n − k), which in this example is

sqrt(586720/12)

## [1] 221.1

The result of aov has more information than shown, just as the result of
lm does. For example, the summary function returns

summary(res)

## Df Sum Sq Mean Sq F value Pr(>F)
## ind 2 174664 87332 1.79 0.21
## Residuals 12 586720 48893

These are the values needed to perform the one-way test. This tabular
layout is typical of an analysis of variance.

• Example 12.3: Effect of grip on cross-country skiing
Researchers at Montana State University performed a study on how various
ski-pole grips affect cross-country skiing performance. There are three basic
grip types: classic, modern, and integrated. Suppose 9 skiers are assigned at
random to the three grip-types and for each the skier has upper-body power
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Grip type classic integrated modern

168.2 166.7 160.1
161.4 173.0 161.2
163.2 173.3 166.8

Table 12.1: Upper-body power output (watts) by ski-pole grip type.

output measured. The data is summarized in Table 12.1. Does there appear
to be a difference in power output due to grip type?

We can investigate the null hypothesis that the three grips will produce
equal means with an analysis of variance. We assume that the errors are all
independent and that the data is sampled from normally distributed popu-
lations with common variance but perhaps different means.

First we enter in the data. Instead of using stack, we enter in all the data
at once and create a factor using gl to indicate grip type.2

UBP <- c(168.2, 161.4, 163.2, 166.7, 173.0, 173.3,
160.1, 161.2, 166.8)

grip.type <- gl(3, 3, 9, labels=c("classic", "integrated", "modern"))
boxplot(UBP ~ grip.type, ylab="Power (watts)",

main="Effect of cross country grip")

The boxplot in Figure 12.2 indicates that the integrated grip has a signif-
icant advantage. But is this due to sampling error? We use aov to carry out
the analysis of variance.

res <- aov(UBP ~ grip.type)
summary(res)

## Df Sum Sq Mean Sq F value Pr(>F)
## grip.type 2 116.7 58.3 4.46 0.065 .
## Residuals 6 78.4 13.1
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We see that there is a small p-value that is significant at the 10% level. ••

2We could also use rep with vectorized arguments to create the factor, but gl is designed for
just this task.
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Figure 12.2: Effects of cross-country ski-pole grip on measured power output.

The nonparametric Kruskal–Wallis test

The Wilcoxon rank-sum test was discussed as a nonparametric alternative
to the two-sample t-test for independent samples. Although the populations
had no parametric assumption, they were assumed to have densities with a
common shape but perhaps different centers.

The Kruskal–Wallis test, a nonparametric test, is analogous to the rank-
sum test for comparing the population means of k independent samples.

In particular, if f (x) is a density of a continuous random variable with
mean 0, the assumption on the data is that xij is drawn independently of the
others from a population with density f (x − µi). The hypotheses tested are

H0 : µ1 = µ2 = · · · = µk, HA : µi �= µj for at least one pair i and j.

The test statistic involves the ranks of all the data. Let rij be the respective
rank of a data point when all the data is ranked from smallest to largest, r̄i be
the mean of the ranks for each group, and r̄ the grand mean. The test statistic
is:

T =
12

n(n + 1) ∑
i

ni(r̄i − r̄)2. (12.3)

Statistical inference is based on the fact that T has an asymptotic χ2-
distribution with k − 1 degrees of freedom.


