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A Global View of Gene Activity and
Alternative Splicing by Deep Sequencing
of the Human Transcriptome
Marc Sultan,1* Marcel H. Schulz,2,3* Hugues Richard,2* Alon Magen,1
Andreas Klingenhoff,4 Matthias Scherf,4 Martin Seifert,4 Tatjana Borodina,1
Aleksey Soldatov,1 Dmitri Parkhomchuk,1 Dominic Schmidt,1 Sean O’Keeffe,2
Stefan Haas,2 Martin Vingron,2 Hans Lehrach,1 Marie-Laure Yaspo1†

The functional complexity of the human transcriptome is not yet fully elucidated. We report
a high-throughput sequence of the human transcriptome from a human embryonic kidney
and a B cell line. We used shotgun sequencing of transcripts to generate randomly distributed
reads. Of these, 50% mapped to unique genomic locations, of which 80% corresponded
to known exons. We found that 66% of the polyadenylated transcriptome mapped to known
genes and 34% to nonannotated genomic regions. On the basis of known transcripts,
RNA-Seq can detect 25% more genes than can microarrays. A global survey of messenger RNA
splicing events identified 94,241 splice junctions (4096 of which were previously unidentified)
and showed that exon skipping is the most prevalent form of alternative splicing.

Global analysis of gene expression has
mostly relied on RNA hybridization on
high-density arrays (1–3), allowing the

profiling of many tissues (4, 5) but detecting only
specific sequences. Whole-genome tiling arrays
theoretically allow the capture of much of the
complexity of the transcriptome (6, 7), but they
ignore splice-junction information and are asso-
ciated with high costs and difficulties in data
analysis. Arrays that specifically detect alterna-
tive splicing (AS) events (8, 9) have been ham-
pered by issues of completeness and specificity.

Digital transcript-counting approaches over-
come many of the inherent limitations of array-
based systems and bypass problems inherent
to analog measurements, including complex
normalization procedures and limitations in de-
tecting low-abundance transcripts. However, the
expressed sequence tag (EST) approach, pro-
viding partial sequences of individual cDNA
clones, is sensitive to cloning biases and has high

costs. Serial analysis of gene expression (10)
and massively parallel signature sequencing (11)
are also costly and cannot be used for splicing
events.

The potential of RNA-Seq (short-read high-
throughput sequencing) was first demonstrated
by the polony multiplex analysis of gene ex-
pression, allowing the detection of 0.3 RNA
copies per cell (12). Illumina-based RNA-Seq
technology has recently been applied to yeast and
Arabidopsis thaliana (13–15), providing tran-
scriptome surveys at single-nucleotide resolution.

We present here a snapshot of the human
transcriptome at base-pair resolution via RNA-
Seq (16). Briefly, poly(A) RNA was extracted
from human embryonic kidney (HEK) 293T
and Ramos B cells and used to generate double-
stranded cDNA using random hexamers as prim-
ers. The double-stranded DNA was sheared
by sonication for preparing the sequencing li-
braries according to the Illumina protocol (16).
Illumina deep sequencing was used to gener-
ate 27–base pair (bp) reads from replicate sam-
ples for each cell line. Reads were mapped to
the human genome (hg18, National Center of
Biotechnology Information build 36.1) using the
Eland software, allowing up to two mismatches
(16). Of the total reads, 50% matched to
unique genomic locations, 16 to 18% showed
multiple matches, and 25% had no match to
the genome (Table 1 and table S1). 6000 reads
from HEK were adenovirus or SV40 sequences,

reflecting the origin of this cell line. We mapped
the unique reads to known genes based on both
ENSEMBL (17) and RefSeq/ElDorado (Tables 1
and 2 and tables S1 and S2) (16): 80% of the
unique reads mapped to known exons.

Digital expression levels were normalized
(NE values) by taking into account the theoret-
ical number of unique 27-mers (sequences that
are 27 bases long) contained in each exon and
the total number of reads generated in each
experiment (table S2) (16).

To assess whether NE values were a reliable
indicator of gene activity, we correlated these
values with hypophosphorylated RNA polymer-
ase II (PolIIa) occupancy, used as a landmark
of transcription initiation (18). For HEK, we
identified PolIIa islands by chromatin immu-
noprecipitation and sequencing (ChIP-Seq)
(16). Figure 1 shows that the density of PolIIa
reads correlates positively with gene expression
levels. However, in contrast to a study reporting
that 37% of the silent promoters contained PolII
islands (19), we observed virtually no PolIIa
near the promoters of silent genes. This apparent
contradiction is most likely due to the higher
sensitivity of RNA-Seq, detecting gene expres-
sion that would be scored silent with arrays
(see below). The current model of the pre-
recruitment of PolIIa at the promoter of silent
genes (20) may be lacking sufficiently sensitive
expression data. In Fig. 1, the peaks for low and
moderately expressed genes exhibit a more pro-
nounced shoulder than those for highly ex-
pressed genes. This might reflect the presence of
a large preinitiation complex where PolIIa is
parked upstream of the transcription start site
(TSS) of the less active genes until activated, or
the existence of alternative TSS. In clustering the
reads specifying PolIIa-bound regions, we
identified 9710 PolIIa-bound regions, of which
80% associated to known promoters (table S3)
(16). Of the remaining 1936 PolIIa-bound re-
gions, more than half were supported by Cap-
analysis of gene expression (CAGE) tags (21),
and 567 were either located within genes or less
than 1 kb upstream of the next annotated tran-
script, representing putative alternative promoters.

In evaluating the dynamic range and sensi-
tivity of RNA-Seq, we predicted the number
of genes present within a cell type by applying
a Poisson mixture statistical analysis on the
number of reads mapped to genes (16, 22). We
showed that the performances achieved for
each sample corresponded to a gene identifi-
cation score of 83 to 92% for HEK and 70 to
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84% for B cells (fig. S1) (16). RNA-Seq was
significantly more sensitive than microarrays
on the same RNA source, detecting 25% more
genes (Fig. 2, A and B) (16). Genes detected
exclusively by RNA-Seq were in the lowest
range of NE values, corresponding to rarely
expressed genes (Fig. 2B). Between 100 and
200 transcripts were only detected on arrays

(Fig. 2A), exhibiting intensity values close to
the background and hence increasing the chance
that those were artefacts, a known issue in array
analysis (23, 24).

We analyzed expression of all ENSEMBL
genes expressed simultaneously on both plat-
forms and in both cell lines (7043 genes) (16).
Correlation between the two platforms was

high [Pearson correlation coefficient (PCC) =
0.88], in spite of a compression effect resulting
in smaller ratios in microarrays (Fig. 2C). This
feature was reported previously and is partly
due to the limited dynamic range of array ex-
periments (23–26). Microarrays detected 3421
genes whose levels of expression were different
between the two cell lines, whereas RNA-Seq
detected 4376 such genes. The overlap between
the two approaches was 2685 genes (table S4).
For the latter, levels-of-expression differences
between the two cell lines were highly concor-
dant between the two approaches (PCC, 0.94;
Kendall rank correlation coefficient, 0.75).

We carried out a functional analysis of dif-
ferentially regulated and cell type–specific genes
(table S5) (16). Among the 55 genes most over-

Table 1. Summary of genes, splice junctions, and previously unrecognized TUs identified by RNA-
Seq; mapping of the read for the merged lanes.

Mapping summary HEK 293 B cells

Total reads 8,638,919 7,682,230
Low-quality reads 234,160 194,999
Reads with multiple matches 1,546,361 1,324,770
Reads with unique matches 4,640,112 3,895,643
Reads mapping to annotated RNAs 3,712,476 2,902,387

(ENSEMBL + Eldorado)
ENSEMBL genes with at least five reads 12,567 10,668
ENSEMBL genes with at least one read 14,963 13,739
Reads in intronic clusters 38,598 44,781
ENSEMBL genes with intronic read 1445 1409

clusters
Introns with read clusters 1862 1847
Reads with no match to the genome 2,218,286 2,266,818
Reads aligned to splice junctions 307,904 229,453

Identified junctions
(expected)

78,880
(81,302)

62,596
(66,981)

Genes (at least five reads) with
junctions

10,292 8655

Genes (at least one read) with
junctions

10,558 8910

Genes (at least one read) with
previously unknown junctions

2078 1732

Previously unknown junctions 2397 1965
Previously unknown junctions
identified by less than one read

203 182

Table 2. Summary of genes, splice junctions,
and previously unrecognized TUs identified by
RNA-Seq; features associated to the 352 previ-
ously unknown intergenic TUs identified in HEK
and B cells.

Features Number
of TUs

CAGE tags 253
CAGE tags + PolIIa-bound regions 22
PolIIa-bound regions (without CAGE) 2
Contain repeated elements 50
Match to human pseudogenes 9
Identity to human full-length cDNA 28
Similarity to nonhuman sequences 16
Similarity to known proteins 121
Exon-intron structure 24
Uniquely expressed in HEK293 134
Uniquely expressed in B cells 153
Expressed in both cell types 66

Fig. 1. Correlation of RNA PolIIa
read density with TSS. The plot
shows the number of RNA PolIIa
reads relative to the TSS for all
12,567 ENSEMBL-expressed genes
distributed in five groups: (i) high
(4189 genes with 0.0889 < NE <
47.8; red); (ii) moderate (4189
genes with 0.0263 < NE < 0.0889;
green); (iii) low (4189 genes with
0.0003 < NE < 0.0263; blue); (iv)
uncertain (2396 genes with one to
four reads; pink); and (v) silent
(7333 genes with no read; black)
expression. bps, base pairs.
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expressed in the lymphoma cells, we found an
enrichment of factors involved in Ras protein
signal transduction pathway and immune sys-
tem processes. The 271 most active genes spe-
cific to B cells were significantly enriched for
MHC class II receptors and factors belonging to
the CD38, LCK (lymphocyte-specific protein
tyrosine kinase), ZAP70 (zeta chain–associated
protein kinase 70 kD), CD19, and BLK (B lym-
phoid tyrosine kinase) signaling pathways. Of
the 2669 genes specific to HEK, the top 1000
were enriched for factors involved in DNA bind-
ing and for cytoskeletal proteins binding the
extracellular matrix.

To more precisely define 5′ and 3′ gene bound-
aries and identify all transcribed regions, we
analyzed reads in intronic and intergenic re-
gions. We assessed noise levels by means of a
Poisson model of the noncoding part of the
genome; the probability to observe more than
four random reads per 100-bp window was
<10–12 (16). We scanned the DNA regions 5 kb
upstream and downstream of all transcripts, only

considering read clusters that displayed a den-
sity similar to that of the neighboring exon. Ap-
proximately 500 genes were extended at the 5′
end by at least 50 bp (table S6), 300 of which
were supported by CAGE tag(s) (21), and ~300
genes were extended at their 3′ end in each cell
line. Only 15% of these were common to both
cell types. Furthermore, we searched for read
clusters in the 39% of the genome correspond-
ing to intronic regions, using a stringent algorithm
that required a minimum of five reads in 100-bp
sliding windows (16). We identified 2751 and
2862 clusters (average length of 191 bp, total-
ing 38,598 and 44,781 reads) located within
1862 and 1847 introns of 1445 and 1409 genes
in HEK and B cells, respectively (table S7). A
large fraction (87%) of these clusters mapped to
human ESTs (table S7). ESTs were used to infer
previously unidentified exons of known genes
when clusters and genes mapped to the same
EST (e.g., 1500 and 1358 previously unknown
exons were connected within 916 and 834 genes
in HEK and B cells, respectively). Of these

exons, 70% were unique to one cell type and
likely to be differentially spliced. Remaining
clusters could either represent rare exons not
represented in ESTs or hallmarks of transcrip-
tional activity in both the DNA strands.

Similarly, we scanned for transcriptional ac-
tivity in the 58% of the human genome corre-
sponding to intergenic regions (16). We identified
531 clusters totaling 13,805 reads distributed
in 280 intergenic regions (table S8). Using in-
ferences from EST mapping, 237 out of 531
(237/531) clusters collapsed within 58 transcribed
units (TUs), whereas 294/531 clusters remained
individual units, identifying altogether 352 TUs
(size range: 92 to 182 bp) (table S8). An exon-
intron structure was found in 24 TUs, based on
a minimal distance of 1 kb between two clusters
(16). Additional attributes supporting the im-
portance of the previously unrecognized TUs—
including CAGE tags, PolIIa-Bound regions, and
similarities to known expressed sequences iden-
tified by BlastN and BlastX (27) analysis—are
summarized in Table 2 (details in table S8).

Fig. 2. RNA-Seq versus microarrays. Evalu-
ation of the sensitivity of RNA-Seq over mi-
croarrays on the same RNA source and based
on 13,118 genes represented on the array.
(A) Comparison of the number of expressed
genes detected by RNA-Seq and microarrays. Values for relaxed (at least one read) and
stringent (at least five reads) RNA-Seq parameters are in bold or in brackets, respectively.
(B) Distribution of the RNA-Seq NEs and the proportion of genes detected on microarrays.
Genes missed by microarrays are shown with gray (HEK) and black (B cells) bars. Genes
detected by microarrays are shown with light red (HEK) and dark red (B cells) bars. (C)
Comparison of differentially expressed genes in both platforms. The plot shows log2 ratios
(B versus HEK cells) of expressed genes in both HEK and B cells and in RNA-Seq (x axis)
and microarray (y axis) (7043 genes in total). The blue line shows the fit obtained by
adjusting a regression line. The green and red lines correspond to SEs of 33 and 50%,
respectively.

15 AUGUST 2008 VOL 321 SCIENCE www.sciencemag.org958

REPORTS

 o
n 

D
ec

em
be

r 
9,

 2
00

8 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org


More than 80% of the TUs were unique to one
cell line. Similarities to known proteins were
found in 121 TUs, although some contained a
stop codon. In addition, Blast analysis grouped
13 TUs into six larger units (table S8). For in-
stance, TU 33 and TU 34 defined a highly tran-
scribed region spanning 190 kb on chromosome
2 (fig. S2). Overall, 7% of the orphan reads were
clustered in potentially active regions. The bulk

of orphan reads seems to reflect a moderate-
to-low transcriptional activity more diffusely
distributed in the genome. Relaxing the param-
eters to 3 reads per 400-bp window embedded
328,683 reads, roughly equally distributed be-
tween intronic and intergenic regions, covering
a total of 27.5 Mb of DNA (0.9% of the human
genome). Taking this figure, 66% of the poly-
adenylated transcriptome of the two cell lines

mapped to known genes and 34% to nonanno-
tated genomic regions.

Approximately 14% of the unmatched reads
(Table 1) could be mapped to a set of synthet-
ically computed splice junctions enumerating
all theoretical constitutive and AS junctions with-
in annotated transcripts Table 1 and table S9, A
and B) (16). We observed, on average, 7.2 junc-
tions per gene and a mean density of 3.8 reads

Fig. 3. AS events observed by junction reads. (A) Distribution of the three
major types of AS: (i) cassette exons, (ii) alternative 5′ splice sites, and (iii)
alternative 3′ splice sites. (B) Frequency of skipped exons normalized to the
number of junctions that do not skip any exon in HEK (blue) and in B cells
(red). (C) Example of AS in the PKM2 gene. Three isoforms annotated in
ENSEMBL (ENST00000335181, ENST00000389092, ENST00000389091)
are shown next to the gene name, and exons are numbered. The read
coverage is shown for each exon (blue for HEK and red for B cells). Splice-

junction reads are shown as arrows; the numbers above the arrows
represent the number of reads at junctions. The bottom box shows base-
pair resolution coverage in HEK cells of the gene’s regions containing
exons 8 to 10 (green arrows at left) and 4 to 6 (green arrows at right). The
blue lines denote splice junctions. (Left) Two different sequenced junctions
connecting either exon 9 or exon 10 and identifying alternative transcripts
with mutually exclusive exons in HEK and in B cells. Colored dots represent
sequence differences.
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per junction. Although 29,689 junctions in HEK
and 24,848 in B cells had only one read, those
were considered highly notable, as we expect
at most 23 reads hitting a junction by chance
in the entire data set (16). Splice junctions were
associated with 81% of the expressed genes. We
also observed splice junctions for ~260 genes
in each cell line that were not classified as ex-
pressed (Tables 1 and 2). Of those, 70% had
between 1 and 4 reads and 30% were silent, sug-
gesting a very low activity. The fact that 2275
expressed genes in HEK and 2013 in B cells
had no splice-junction reads correlated with the
fact that those genes contained fewer exons and
a lower activity than the average, reducing the
probability to hit a splice junction.

We observed 95% of the splicing events ex-
pected in this data set, given the current se-
quencing depth (Table 1) (16). We identified 4096
previously unknown splice junctions in 3106
genes, mostly called by single reads and unique
to one cell type (Table 1). Many of these junc-
tions were associated with actively transcribed
genes exhibiting more exons than average, point-
ing to rare splicing events. Approximately 6%
of all splice-junction reads identified AS events
(6416 junctions in 3916 genes HEK and 5195
junctions in 3262 genes in B cells) (table S9). In
a parallel study surveying the mouse transcriptome,
AS forms were observed for 3462 genes in three
tissues (28), but no attempts were made to search
for previously unrecognized junctions. Within a
cell type, junction reads identify AS in 30% of
the expressed genes, where exon skipping was
largely overrepresented (Fig. 3A). Skipping events
affected mostly one or two exons, with a sharp

decline between one and five exons (Fig. 3B). An
illustrative example of AS is given for PKM2,
also showing that the read density reflects the
exon usage (Fig. 3C). Very complex patterns of
AS could be detected. For instance, with the use
of EIF4G1 coding for the eukaryotic translation
initiation factor 4 gamma 1, we showed 12 AS
junctions in B cells, of which five have not yet
been identified (fig. S3). Although AS is known
to regulate the expression of EIF4G1 (29, 30),
such a complex pattern had never been de-
scribed before.
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Small CRISPR RNAs Guide
Antiviral Defense in Prokaryotes
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Prokaryotes acquire virus resistance by integrating short fragments of viral nucleic acid into clusters
of regularly interspaced short palindromic repeats (CRISPRs). Here we show how virus-derived
sequences contained in CRISPRs are used by CRISPR-associated (Cas) proteins from the host to
mediate an antiviral response that counteracts infection. After transcription of the CRISPR, a complex
of Cas proteins termed Cascade cleaves a CRISPR RNA precursor in each repeat and retains the
cleavage products containing the virus-derived sequence. Assisted by the helicase Cas3, these
mature CRISPR RNAs then serve as small guide RNAs that enable Cascade to interfere with virus
proliferation. Our results demonstrate that the formation of mature guide RNAs by the CRISPR RNA
endonuclease subunit of Cascade is a mechanistic requirement for antiviral defense.

The clusters of regularly interspaced short
palindromic repeat (CRISPR)–based de-
fense system protects many bacteria and

archaea against invading conjugative plasmids,
transposable elements, and viruses (1–8). Resistance
is acquired by incorporating short stretches of
invading DNA sequences in genomic CRISPR

loci (1, 9, 10). These integrated sequences are
thought to function as a genetic memory that
prevents the host from being infected by viruses
containing this recognition sequence. A num-
ber of CRISPR-associated (cas) genes (11–13)
has been reported to be essential for the phage-
resistant phenotype (1). However, the molec-

ular mechanism of this adaptive and inheritable
defense system in prokaryotes has remained
unknown.

The Escherichia coli K12 CRISPR/cas sys-
tem comprises eight cas genes: cas3 (predicted
HD-nuclease fused to a DEAD-box helicase),
five genes designated casABCDE, cas1 (predicted
integrase) (13), and the endoribonuclease gene
cas2 (14) (Fig. 1A and table S1). In separate
experiments, each Cas protein was tagged at
both the N and C terminus and produced along
with the complete set of untagged Cas proteins
(15). Affinity purification of the tagged com-
ponent enabled the identification of a protein
complex composed of five Cas proteins: CasA,
CasB, CasC, CasD, and CasE (Fig. 1B). The
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