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X inactivation and the complexities of silencing a sex
chromosome
Jennifer Chow and Edith Heard
X chromosome inactivation represents a paradigm for

monoallelic gene expression and epigenetic regulation in

mammals. Since its discovery over half a century ago, the

pathways involved in the establishment of X-chromosomal

silencing, assembly, and maintenance of the heterochromatic

state have been the subjects of intensive research. In placental

mammals, it is becoming clear that X inactivation involves an

interplay between noncoding transcripts such as Xist,

chromatin modifiers, and factors involved in nuclear

organization. Together these result in a changed chromatin

structure and in the spatial reorganization of the X

chromosome. Exciting new work is starting to uncover the

factors involved in some of these changes. Recent studies have

also revealed surprising diversity in the kinetics and extent of

gene silencing across the X chromosome, as well as in the

mechanisms of XCI between mammals.
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Introduction
In mammals, sex chromosome dosage compensation is

achieved by silencing one of the two X chromosomes

during early female development. The kinetics and

mechanism of X chromosome inactivation (XCI) have

mainly been studied in mice, which display an initial,

imprinted form, and a later, random form of XCI. Both

forms of XCI are dependent on the noncoding Xist RNA,

which coats and silences the chromosome from which it is

expressed. However, the mechanistic details of these two

forms of XCI are still far from clear. Furthermore, up until

recently it was thought that XCI could only occur during

an early window of developmental time. However, recent

work has revealed that Xist RNA may be apt to induce

gene silencing in adult stem or progenitor cells, as well as
www.sciencedirect.com
in cancer cells — and the factors underlying this capacity

are just starting to be uncovered. This opens up the

possibility of understanding the epigenetic plasticity that

can exist beyond early development. Xist RNA is turning

out to be a multitasking molecule, regulating not only the

onset of gene silencing, but also the reorganization of the

X chromosome and possibly the recruitment of chromatin

modifying complexes required to establish epigenetic

marks. The formation of inactive X (Xi) heterochromatin

and its stable propagation through cell division, are

thought to be ensured by these chromatin marks, as well

as by spatial and temporal segregation of the Xi. The

heterochromatin of the Xi is not a homogeneous entity,

however, consisting of different combinations of histone

modifications and other epigenetic marks, depending on

species and cell type. In this review we will focus on some

of the most recent findings in the field, particularly on Xist

RNA-mediated gene silencing and downstream events

during X inactivation.

Chromatin architecture of the inactive X
chromosome
The XCI process was discovered in 1961 by Lyon [1].

Facultative heterochromatin of the Xi had already been

noted in 1949 by Barr and Bertram [2], as a dark staining

body in female cat neurons, often located at the nuclear

periphery or the nucleolus. Asynchronous replication

timing was later discovered as another hallmark of the

Xi [3]. However, the degree to which the Xi is condensed

compared to other regions of the genome, and the mol-

ecular nature of its heterochromatin have remained

unclear. Immunofluorescence (IF) and chromatin immu-

noprecipitation (ChIP) techniques are providing a more

detailed picture of the chromatin status of the Xi. IF

studies on mitotic chromosomes [4] or interphase nuclei

[5,6] have shown that the Xi is globally enriched in several

histone modifications, including H3K27me3, H3K9me2,

H3K9me3, H4K20me1, H2AK119Ub as well as in the

histone variant macroH2A. Conversely, the Xi is depleted

for marks commonly associated with euchromatin such as

H3K4me2/3 as well as H3 and H4 acetylated lysines. Such

studies also revealed that Xi heterochromatin is not a

homogeneous entity. In human somatic cell lines, at least

two distinct heterochromatin signatures have been

characterized: one defined by the presence of XIST

RNA, macroH2A, H3K27me3, H4K20me1, and

H2AK119Ub; and the other by features more consistent

with constitutive heterochromatin including later replica-

tion timing, H3K9me3, H4K20me3, and HP1. By IF,

these different heterochromatin domains appear to
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remain spatially distinct during metaphase and inter-

phase. In mouse, on the other hand, enrichment of

HP1 and H3K9me3 on the Xi is much less distinctive

[7,8]. Species differences are even more striking in mar-

supials where at metaphase, although the Xi is depleted

for active marks similarly to the mouse and human Xi, no

significant enrichment for inactive histone modifications

(H3K9me2, H3K27me3, H3K9me3, and H4K20me3), is

detected, at least by IF [9�]. Interphase Xi patterns in

marsupials still require evaluation however. Interestingly,

in marsupials there is no XIST gene [10]. This may

explain the lack of histone modifications that characterize

the eutherian Xi, as some of these (particularly

H3K27me3) require XIST to trigger their recruitment.

Whether such differences explain why gene silencing on

the Xi is less stable in marsupials compared to eutherian

mammals remains to be seen. The situation in mono-

tremes is even less clear where the sex chromosome

composition is extremely complex with females having

five pairs of XX chromosomes and males having five XY

pairs. In addition, the levels of dosage compensation

are largely incomplete and variable between genes

[11,12,13�].

Epigenomic analyses, such as ChIP-chip and allele-

specific ChIP, are starting to provide a higher resolution

view of the chromatin signatures on the Xi [14–18]. For

example, ChIP-chip analysis for macroH2A1 in mouse

liver cells reveals a �1.5X enrichment in females versus

males. This enrichment is distributed uniformly across

the entire X chromosome, suggesting that macroH2A1

may influence global chromatin structure rather than

directly inhibiting transcription at promoters of genes

[19�]. DNA methylation of promoters of X-linked genes

is another hallmark of XCI in eutherian somatic cells.

Global microarray analyses involving methylated DNA

immunoprecipitation (MeDIP) were used to assess the

DNA methylation status of the Xi relative to the Xa in

human primary cells. This study revealed that although

CpG islands are hypermethylated on the Xi, the overall

levels of methylation on the X chromosome are in fact

lower in females compared to males, especially in gene-

poor regions [20]. Hellman and Chess [21] analyzed the

DNA methylation status of more than 1000 informative

X-linked loci and found that on the active X, DNA

methylation is concentrated in gene bodies, confirming

previous studies (for review see [22]). The function of

gene-body methylation is currently unclear, but has been

observed in other species, including marsupials and plants

(see [22,23]) and points to a possible role for methylation

outside of promoters in gene regulation. Such studies and

the advent of next generation sequencing technologies

enabling genome-wide, allele-specific analyses, will

hopefully provide a detailed view of the epigenomic

constitution of the Xi and identify specific combinations

of DNA methylation, histone modifications, and other

proteins that might be predictive for XCI efficiency or
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stability. Such approaches may also unveil specific DNA

elements that set up distinct chromatin signatures on the

Xi.

Nuclear organization of the inactive X
chromosome
Spatial organization of the X chromosome also seems to

play a role in X inactivation [24,25]. Using fluorescence in
situ hybridization (FISH), two studies have shown that

the Xi consists of a repetitive core, surrounded by an outer

rim of genes and encompassed by Xist RNA [25,26].

Combined IF and RNA/DNA FISH revealed that marks

such as H3K27me3 are enriched within this repetitive

Xist RNA compartment (Figure 1). Only genes that

escape XCI, or that lie within the pseudoautosomal

region, are found to be located outside it ([25,27]; see

Figure 1). Ultrastructural analysis of the Xi was recently

performed in mouse and human fibroblasts [28��]. Using

light and electron microscopy, the H3K27me3-labeled

portion of the Xi was shown to consist of tightly packed

heterochromatic fibers/domains with intervening spaces

between them. Importantly, this structure is distinct from

both euchromatin and constitutive heterochromatin.

Given that H3K27me3 stains only part of the Xi territory

at interphase, particularly in human cells [14], it will be

interesting to determine whether H3K9me3-stained Xi

regions show a similar organization, or whether they

resemble constitutive heterochromatin.

In addition to the organization and structure of the Xi, its

spatial segregation within the nucleus might also promote

the inactive state, by facilitating access to factors required

for heterochromatin, or limiting access to factors required

for transcription. The Xi is frequently located at the

nuclear periphery or at the nucleolus [28��] both of which

are associated with heterochromatin (for review see [29]).

Zhang et al. [30�] recently showed that perinucleolar

association of the Xi only occurs during S phase and is

Xist RNA-dependent. They proposed that nucleolar

positioning might be important for faithful replication

of the Xi’s epigenetic state as the nucleolar periphery is

enriched in factors required for replication of heterochro-

matic regions [30�]. Whether perinucleolar association of

the Xi is the cause or consequence of its heterochromatic

state remains to be determined however [7,31].

Setting up the inactive state during XCI
The early steps in imprinted and random XCI are similar,

although random XCI seems to entail additional epige-

netic marks, such as DNA methylation (Figure 2). The

absence of DNA methylation on the imprinted paternal

Xi, probably explains the ease with which the inactive

state is reversed in the inner cell mass on the one hand

[32], and the greater dependence of imprinted XCI on

Polycomb group proteins for maintaining silencing, on

the other [33]. The earliest detectable event in both the

initial imprinted form of XCI and the later random form of
www.sciencedirect.com
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Figure 1

(a) Structure of the Xist gene with the conserved repeat regions labeled A–F. The A region (red) denotes the conserved A-repeat region essential for

gene silencing. (b) Combined RNA-immunofluorescence on day 2 differentiated female ES cells, showing the Xist-coated transcriptionally silent

compartment which is enriched for H3K27me3. (c) Model. Xist coating induces the formation of a transcriptionally silent repetitive compartment. As

genes are silenced they are recruited into this compartment. A possible mediator for this internalization may be the matrix-associated protein SATB1/2.
XCI is the monoallelic upregulation of Xist RNA

(Figure 2). Xist RNA coating rapidly leads to the for-

mation of a silent, repetitive compartment that is

depleted for RNA polymerase, transcription factors,

and euchromatic marks. The onset of gene silencing

occurs subsequently, as do PcG-induced and other chro-

matin changes on the Xi, although these can be function-

ally dissociated from gene silencing, based on analysis of

Xist RNA and PcG mutants [7,25,34,35]. XCI is accom-

panied by spatial reorganization of genes on the X

chromosome, as they are initially located outside the

silent, Xist RNA compartment, but move into it as

inactivation proceeds [25,27]. This relocation of genes

into the heterochromatic core of the Xi may be an active

process, driven by Xist RNA to facilitate silencing. Alter-

natively it may be a passive consequence of gene silen-

cing, which could nevertheless participate in maintaining

inactivity.
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New insights into the exact timing of X-linked gene

silencing during X inactivation have recently been

obtained (Figure 2). XCI was thought to be a rather

concerted process, occurring in the space of just a few

cell divisions, during the critical time window when Xist

RNA can act [36]. However, studies in mouse preimplan-

tation embryos [37] and ES cells [38] now show that XCI

is in fact a far more prolonged process. Different genes

show very different XCI kinetics, with some genes being

silenced well outside of the time window in which Xist is

thought to act (Figure 2). Several lines of evidence point

to a gradient effect, with genes closest to the Xic being

silenced earliest during differentiation [37–39]. However

this breaks down somewhat for regions further from the

Xic. Such heterogeneity in XCI kinetics and efficiency

across the X chromosome suggests highly region-specific

processes; however, the underlying sequences respon-

sible remain to be found. Nevertheless, these findings
Current Opinion in Cell Biology 2009, 21:359–366
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Figure 2

Kinetics of imprinted and [random inactivation]. The table details specific features of the inactive X chromosome and their possible effectors.
imply that Xist RNA may actually function outside an

early differentiation time window, and/or that the

changes it induces are propagated more slowly into some

regions than others. They also raise the possibility that

Xist-independent mechanisms of silencing may exist for

some regions of the X chromosome.

Although Xist RNA seems to recruit, directly or

indirectly, certain chromatin modifying complexes in-

cluding PcG proteins, we still do not understand the

precise nature of the changes on the Xi that lead to
Current Opinion in Cell Biology 2009, 21:359–366
subsequent events during XCI, such as the shift to late

replication timing, macroH2A enrichment, and DNA

methylation at promoters of X-linked genes. A recent

new player in X inactivation that may play a role in some

of these downstream changes — the SmcHD1 protein —

has recently been identified [40��]. Smchd1 mutant female

embryos display both placental and extraembryonic

defects and die before stage E13.5. As the lethality

observed is well after initiation of XCI, this is suggestive

of a function during maintenance. Indeed, promoter

DNA hypomethylation on the Xi was detected in
www.sciencedirect.com
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mutants, suggesting that Smchd1 may affect the DNA

methylation deposition step [40��]. SmcHD1 is an SMC-

like protein with homology to components of cohesin and

condensin complexes. These proteins are implicated in

dosage compensation in C. elegans where both X chromo-

somes are downregulated in female hermaphrodites [41],

providing an exciting potential link between these two

forms of dosage compensation.

Escape from X inactivation
Several X-linked genes can escape XCI, particularly in

humans. The degree of escape can vary considerably

between loci, ranging from 5% to >75% of Xa levels

[42]. This heterogeneity is presumably because of the

differences in the local environment of genes. LINE1

elements, which are enriched on the X chromosome, have

been proposed to facilitate XCI spread and/or mainten-

ance [43] and are depleted in the vicinity of escapees

[44,45]. Insulator elements may form domains of escape

by preventing the spread of heterochromatinization and/

or recruitment into the silent repetitive compartment. For

example, CTCF-binding sites are hypothesized to play

such a role as they have been identified between inacti-

vation and escape domains [46]. The existence of escape-

promoting DNA elements was demonstrated by trans-

genic studies in mouse ES cells, as the escape gene

Jarid1C was found to retain its escape capacity in several

different integration sites on the Xi [47��].

What might the functional consequences of escaping XCI

be? Aside from those genes that have homologs on the Y

chromosome, the necessity, if any, for escape remains

unclear. For some escapees, gene dosage may not need to

be stringently controlled. Their level of expression is

often only a fraction of that found on the Xa and may

not have a large impact on overall transcript levels. A

recent study comparing expression levels of X-linked

genes in male versus female lymphoblast cells found that

gene expression is only slightly higher in females [48]. In

some cases however, where tissue-specific or lineage-

specific escape is found, there may be a specific require-

ment for increased dosage of this gene. For example, Atrx
has been found to escape from XCI in trophectoderm

lineages, but not in the embryo. This may indicate a

tissue-specific requirement for increased dosage of its

product [37,49]. Interestingly, Atrx is a chromatin-remo-

deling factor and has been shown to associate with the Xi

[50]. Furthermore, Atrx mutants show defects in

imprinted inactivation [49] which suggests its role in

maintenance is particularly important in extraembryonic

tissues. Thus there may be a need for lineage-specific

escape from XCI for Atrx in order to ensure increased

levels of this protein for its role on the Xi in female

extraembryonic lineages. Whether other escapees, such

as Jarid1c and Utx, both of which are histone demethy-

lases, have similar Xi-specific requirements remains to be

found.
www.sciencedirect.com
Xist RNA and its multiple roles in XCI
The developmental regulation of Xist and its monoallelic

control have been discussed in recent reviews [51]. We

will therefore focus only on the potential functions of Xist

RNA. How does this long noncoding transcript encom-

pass a chromosome in cis and mediate chromosome-wide

silencing during a developmentally restricted time win-

dow? Deletion analyses indicate that Xist has multiple

roles, likely mediated by distinct functional domains [52].

The RNA contains several conserved repeats (Figure 1a;

[53]), the most conserved being the A-repeats, which

when deleted abolish Xist’s gene silencing function.

[52,54]. An inducible Xist cDNA transgene mutated for

the A-repeats is unable to silence genes but can still coat

the chromosome in cis and recruit Polycomb complexes

and H3K27me3 [52]. Interestingly, a similar deletion of

the A-repeats at the endogenous Xist locus revealed that

this region also acts as a genomic regulatory element of

the gene [54]. The A-repeat region also produces an

independent 1.6 kb transcript, RepA which, based on

RNA immunoprecipitation experiments, associates with

PRC2 Polycomb group proteins and was proposed to

nucleate the recruitment of H3K27me3 to the Xi [55�].
However, inducible Xist transgenes deleted for A-repeats

can still recruit H3K27me3 to the X chromosome, imply-

ing that there must be redundancy between Xist

sequences for this function [7,34]. Furthermore, it should

be noted that, whatever RepA’s function may be, PRC2

does not appear to be required for the initiation of random

XCI [35,56].

Increasing evidence points to Xist RNA having an archi-

tectural role that may be important for the specific 3D-

organization of the Xi [25,26,28]. One of the earliest

events following Xist coating is the exclusion of RNA

polymerase II and the transcriptional silencing of a

repeat-rich fraction of the X chromosome [25]. The

formation of this transcriptionally silent compartment

occurs before genes are silenced and is independent of

the A-repeats. As inactivation proceeds, gene silencing is

linked to their movement into this Xist-coated compart-

ment. It is clear that the A-repeats are required for gene

silencing, but whether they have a direct role in ‘reeling’

genes into the compartment is unclear. Exciting new

work from the Wutz laboratory has revealed that the

SATB1 and SATB2 proteins may participate in enabling

the gene silencing function of Xist RNA [57��]. The

proposed role of these proteins in the nuclear reorganiza-

tion of chromosomal sequences during T lymphocyte

development [58] raises the possibility that they might

play a similar role in enabling gene relocation into the

silent Xist repetitive compartment during X inactivation

(Figure 1c). As expression of these factors is restricted to

early ES cell differentiation, this could explain the devel-

opmentally restricted time window of Xist’s silencing

function. Importantly however, recent findings demon-

strated that Xist could actually induce gene silencing
Current Opinion in Cell Biology 2009, 21:359–366
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outside a developmental context, in some cancer cells

[59,60] and in adult progenitor stem cells [61]. Agrelo et al.
[57��] show that this reacquired capacity of Xist-induced

silencing in adult cells comes from re-expression of the

SATB1 protein. This work opens up exciting new

perspectives in understanding Xist’s mechanism of action

and also in evaluating the epigenetic status of cancer cells.

Conclusions
The recent discovery of new factors that are involved in

XCI, such as SATB1 and Smchd1, in addition to the

Polycomb group proteins, provide an important step

forward in the field. This brings us closer to identifying

the complexes that mediate the various steps ensuring

chromosome-wide silencing and maintenance of the inac-

tive state. The unusual timing of XCI for some regions of

the Xi and the diversity of chromatin patterns found on

the Xi, suggest that there may be more than one way of

generating inactive chromatin on the X, both between

and within mammalian species. XCI is thus likely to

involve complex solutions to what, at first sight, might

appear as a relatively simple problem. The future

promises a deeper understanding of the evolutionary

diversity in X inactivation mechanisms between mam-

mals and a more detailed view of the molecular nature of

epigenetic marks on the Xi chromosome.
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