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genes5,8–14. However, these algorithms typically predict hundreds to 
thousands of target genes for each miRNA, and most predicted genes 
are not bona fide targets15. Moreover, the algorithms sometimes 
fail to predict the most biologically important miRNA targets, such 
as the oncogenes KRAS and HRAS for the miRNA let-7 (ref. 16) or 
the transcription factor E2F2 and the oncogene MYC for miR-24  
(ref. 17). Recent studies provide examples of MREs located outside of 
the 3′ UTR (especially in the coding sequence (CDS)) or that lack exact 
seed pairing, but compensate by downstream complementarity17–20.

Experimental methods for identifying miRNA targets identify mRNAs 
or proteins that are downregulated when a miRNA is overexpressed or 
that are upregulated when a miRNA is antagonized17,21–25, or mRNAs 
that precipitate with miRISC-associated proteins26–31. High-throughput 
sequencing of Ago-immunoprecipitated RNAs after crosslinking now 
provides a way to identify miRNA-MRE pairings32–34. These methods 
confirm that current target prediction algorithms miss many genes. Both 
prediction algorithms and experimental methods generate large lists of 
candidate miRNA targets. However, choosing the important targets from 
these long lists is daunting. Gene ontology and interactome analyses of 
candidate target gene lists can be useful tools for this task17. Here, we 
review methods for identifying biologically relevant miRNA targets.

computational prediction of mirna targets
Bioinformatics captures the sequence and location characteristics of MREs 
to predict miRNA targets5,14,35. Commonly used algorithms place variable 
weight on: (i) complementarity to the miRNA seed region; (ii)  evolutionary 
conservation of the MRE; (iii) free energy of the miRNA-mRNA hetero-
duplex; and (iv) mRNA sequence features  outside the target site17,36–38 
(Table 1). Early algorithms, such as TargetScan and PicTar8,9, focus on the 
seed region in miRNA targeting (Table 1). TargetScan8,10,11 requires an 
exact match to ≥7 bases of the seed sequence, but PicTar9 doesn’t, instead 
imposing a stringent free energy cutoff for imperfect matches. (TargetScan 
includes a special class of seed matches with a hexamer match in  
positions 2–7, plus an adenosine at position 1). Both TargetScan and 
PicTar improve their predictions by taking into account evolutionary  
conservation. TargetScan also adds a ‘context score’, which considers features  
in the surrounding mRNA, including local A-U content and location 
(near either end of the 3′ UTR is preferred) and improves predictions for 
nonconserved sequences39. Messenger RNAs that have a high context  
score or multiple predicted MREs are more likely to be true targets.

The miRanda algorithm12 aligns a miRNA to the target mRNA to 
identify highly complementary sequences. Seed pairing is weighed 
more strongly than pairing elsewhere40, but seed G•U wobbles and 
mismatches (Table 1) are allowed. High-scoring targets are then  filtered 
on a secondary criterion of heteroduplex free energy (∆G). Finally, 
only conserved predictions are considered. Because miRanda does not 

micrornas (mirnas) suppress gene expression by 
inhibiting translation, promoting mrna decay or both. each 
mirna may regulate hundreds of genes to control the cell’s 
response to developmental and other environmental cues. 
the best way to understand the function of a mirna is to 
identify the genes that it regulates. target gene identification 
is challenging because mirnas bind to their target 
mrnas by partial complementarity over a short sequence, 
suppression of an individual target gene is often small, and 
the rules of targeting are not completely understood. Here 
we review computational and experimental approaches 
to the identification of mirna-regulated genes. the 
examination of changes in gene expression that occur when 
mirna expression is altered and biochemical isolation of 
mirna-associated transcripts complement target prediction 
algorithms. bioinformatic analysis of over-represented 
pathways and nodes in protein-Dna interactomes formed 
from experimental candidate mirna gene target lists can 
focus attention on biologically significant target genes.

MicroRNAs regulate virtually every aspect of biology, including 
 developmental timing, differentiation, proliferation, antiviral defense 
and metabolism. MicroRNAs are ~22-nucleotide-long RNAs that are 
generated by sequential processing from longer transcripts that  contain 
a stem-loop1–4. One strand is loaded into the miRNA-induced  silencing 
complex (miRISC), which contains the proteins argonaute (Ago) and 
Tnrc6 (trinucleotide repeat–containing 6; GW182). The other strand is 
usually degraded. The mature miRNA guides the miRISC to  partially 
complementary sequences, termed miRNA recognition  elements 
(MREs), in target mRNAs to repress mRNA translation,  promote 
 transcript decay or both1,5–7. MicroRNAs probably regulate the 
 expression of most coding genes8.

Most metazoan miRNAs pair imperfectly with their cognate 
mRNAs, and it is difficult to identify their biologically important 
 targets. Bioinformatic analysis of the first known miRNA-regulated 
genes showed that pairing of miRNA nucleotides 2–8, called the seed 
region, to the 3′ untranslated region (UTR) of the target mRNA is 
often  important5. Algorithms based on seed pairing and evolutionary 
 conservation became a powerful tool for identifying miRNA-regulated 
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MREs lack a perfect seed match to expressed miRNAs32,33. An increasing 
list of  validated MREs lack a canonical seed17,18,24,41. Therefore, filtering 
gene lists by requiring an exact seed match will eliminate true targets.

All bioinformatic analyses need to consider variations in the annotated 
sequence databases used to generate predictions. The same algorithm 
run on two databases (UCSC and Ensembl) generated target  predictions 
that overlapped by less than 50%46. Current  databases do not take into 
account cell type–specific mRNA isoforms. Some mRNAs are alternatively 
 polyadenylated in cellular proliferation47,  cancer48 and  differentiation49, 
generating transcripts with unique 3′ UTRs. It is  important to know 
whether the expressed isoforms in a cell under study contain the predicted 
MREs. High-throughput mRNA  sequencing of  tissue-, development- or 
disease-specific gene expression50 can be  combined with miRNA profiling 
to identify candidate miRNA  targets32.

genetic approaches to mirna target identification
Forward genetics involves screening for mutants with interesting 
 phenotypes, whereas reverse genetics is used to  examine the  functional 
effect of manipulating a  specific gene51. The  founding miRNA lin-4 and 
its target lin-14, which were identified in  forward genetic screens for  larval 
defects in C. elegans, led to the discovery of miRNAs51–53. Other miRNAs 
and a few of their targets were  identified by screens for mutant  phenotypes 
in C. elegans and Drosophila melanogaster51. These targets were generally 
deduced from  epistatic  relationships and the  complementary phenotypes 
that sometimes occur when a miRNA and a key target are mutated51,53.

Reverse genetics has been especially useful for identifying the 
 biological function of miRNAs, and a few examples are described here. 
Conditional overexpression of each of the six miRNAs in the oncogenic 
miR-17–92 cluster pinpointed a prominent role for miR-19, which largely 
 recapitulated the oncogenic properties of the cluster, in  hematological 
cancers in vitro and in vivo54–56. Furthermore, when combined with 
 computational, expression or functional analyses, these studies all 
 identified the tumor suppressor Pten as an important target of miR-19. 
The function of the miR-143–145 cluster, which is highly expressed in 
smooth muscle cells, was elucidated by knocking it out in mice. Knockout 
mice lacked gross developmental defects,  indicating that the cluster is 
not essential for development57,58. However, smooth muscle cells from 
the knockout mice were less differentiated than those from wild-type 
 animals, and were impaired in responding to vascular injury. Targets 
of the cluster were then identified by manually  selecting  interesting 
candidate genes from computational predictions57. Combining reverse 
genetics with computational and other molecular methods is a powerful 
method for dissecting miRNA function21,27,32.

require exact seed pairing, it predicts sites such as the two let-7 sites in 
the Caenorhabditis elegans gene lin-41, which contain either a bulge or 
a G•U wobble in the seed region40,41.

Other algorithms account for target site accessibility42,43. Instead 
of considering only the ∆G of the miRNA-mRNA duplex12,13, these 
 algorithms estimate the free energy cost to unfold the mRNA secondary 
structure that surrounds the target site. The PITA algorithm42 combines 
this free energy cost with the ∆G of miRNA-target pairing to measure 
∆∆G. The algorithm finds seed matches (allowing a user-specified 
 number of mismatches), and calculates ∆∆G for each match,  irrespective 
of conservation. Although designed and tested for 3′ UTRs, PITA can 
predict MREs outside the 3′ UTR. The algorithm mirWIP43 is based on 
sequence features of mRNAs isolated by immunoprecipitation of the  
C. elegans miRISC26. The mirWIP program scores targets on the basis 
of: (i) perfect and imperfect seed matches; (ii) site accessibility from 
predicted mRNA secondary structure; and (iii) ∆Gtotal, an analog of 
∆∆G. The sensitivity and specificity of mirWIP are high relative to those 
of other algorithms for the miRISC dataset that was used to develop it. 
However, it was not tested against other high-throughput datasets.

The rna22 algorithm differs radically from other algorithms13. It relies on 
recognition of shared miRNA sequence patterns. Briefly, the  training  dataset 
considered all known mature miRNA sequences to identify  statistically 
over-represented sequence patterns. Potential MREs were identified as 
complementary patterns. Predictions are made by ‘folding’ each known 
miRNA in silico into a heteroduplex with the  predicted target sequence 
and identifying miRNAs with the lowest ∆G. The rna22  algorithm does not 
consider conservation, its  predictions are not restricted to the 3′ UTR, and 
the user can allow seed mismatches. This algorithm has been used to locate 
‘seedless’ and CDS MREs (Table 1). The developers of rna22 reported a low 
false-positive rate13. However, rna22 did not perform as well as seed-biased 
algorithms on high-throughput proteomic data21,22, and only some rna22-
predicted MREs were validated in low-throughput studies17,44.

Robust comparisons of prediction algorithms are lacking. However, a few 
reviews have compared predictions against a ‘benchmark’ of  experimentally 
validated or refuted miRNA targets14,45. In these  comparisons seed-based 
predictions that require stringent pairing have the highest specificity and 
sensitivity45. Proteomics studies by the  developers of TargetScan and 
PicTar suggest that their seed-based  algorithms have superior  predictive 
power15,21,22. Many experimental studies have found that miRNA 
 targets are enriched for exact miRNA seed matches. Moreover, many 
experimentally validated targets were chosen on the basis of  seed-based 
algorithms. However, recent high-throughput experimental analyses of 
Ago-bound miRNA-mRNA  pairings suggest that around 25%–45% of  

Table 1  miRNA target prediction algorithms differ in their ability to identify unconventional miRNA recognition elements (MREs)
Target prediction algorithma

MRE feature Example TargetScan PicTar miRanda PITA rna22

Perfect  
seed

Ref. 36

G:U wobble  
seed

Ref. 37 –

Imperfect  
seed/seedless

Ref. 17 –

Outside the  
3′ UTR

Ref. 38 – – – + +

aThe algorithms are listed in the rough order by which they weigh perfect seed pairing and location within the 3′ UTR. The algorithms that allow identification of noncanonical recognition sites 
generally are more inclusive, but have much higher false prediction rates. +, algorithm predicts targets of this class; –, algorithm does not predict targets of this class.
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Loss of function has also been used to identify miRNA targets (Fig. 1). 
In vivo knockdown of the liver-specific miR-122 modestly  upregulated 
hundreds of mRNAs60. The most enriched 3′ UTR hexamer motif of 
these genes matched the miR-122 seed and the upregulated genes were 
enriched in genes for cholesterol biosynthesis pathways. An  analysis of 
changes in gene expression after knockdown of miR-15 and -16 was 
 performed at the same time as the overexpression study described above59. 
The increase in mRNA expression after knockdown was small  compared 
to the  downregulation that occurred after ectopic  overexpression, 
 suggesting that ectopic miRNA expression might be more useful than 
miRNA  antagonism for identifying targets. However, the  relative 
 benefits of  overexpression and knockdown depend on  biological context. 
Overexpression may result in supraphysiological miRNA  levels, leading 
to artifacts. In particular, transfection of miRNA  mimics can increase 
the expression of endogenous miRNA targets,  probably because it  limits 
the  available miRISC61. Conversely,  repression of an underexpressed 
miRNA is unlikely to have a substantial effect on target genes. It can also 
be  difficult to suppress a highly expressed  endogenous miRNA.

proteomics
Proteomic analysis can also identify miRNA targets. Stable isotope  labeling 
with amino acids in cell culture (SILAC) followed by mass spectrometry 
can assess the effect of the loss or overexpression of  miRNAs on global 
 protein expression21,22 (Fig. 1). In one study, the nuclear proteome was 
analyzed after overexpression of miR-124, miR-1 and miR-181 in HeLa 
cells21. The results support the  importance of the seed region. For miR-124 
and miR-1, the most enriched  heptanucleotide motif in the transcripts of 
the most downregulated proteins matched the miRNA seed sequence, and 
for miR-181, the second most enriched motif matched the seed. SILAC was 
also used to compare the  expression of  cytoplasmic and nuclear  proteins in 
neutrophils from wild-type and  miR-223  knockout mice. The mRNAs of 
proteins that were  overexpressed in miR-223  knockout  neutrophils were 
most highly enriched for  miR-223 seed matches. Although algorithms that 

Forward genetics can also be used to  identify 
miRNA targets without bias. In one study, 
candidate miR-19 targets were  identified by 
a genome-wide short hairpin RNA screen to 
 discover genes whose  knockdown ‘ phenocopied’ 
overexpression of miR-19 (ref. 54). The screen 
identified eight candidate miR-19–regulated 
genes, of which four were  validated. An 
 important benefit of forward genetic methods 
is that they might identify the most biologically 
meaningful targets.

microarray analysis after mirna 
overexpression or knockdown
Because miRNAs reduce the steady-state transcript levels of most target 
genes6,21–23, identifying mRNAs that are downregulated after ectopic 
miRNA expression or upregulated after miRNA antagonism provides 
a useful way to identify putative miRNA-regulated genes (Fig. 1). 
Although this method cannot distinguish direct from indirect targets, 
harvesting cells soon after transfection might enhance the proportion 
of direct targets24,59. This strategy can also pinpoint miRNA function 
by bioinformatic analysis of the effect of miRNA manipulation on 
global gene expression17,23,59 (Fig. 1). This approach was first used to 
 investigate changes in mRNA after overexpression of muscle-specific 
miR-1 and brain-specific miR-124 (ref. 23). Remarkably, transfection of 
miR-1 into HeLa cells shifted their gene expression profile toward that of 
muscle cells, whereas transfection of miR-124 shifted the profile toward 
that of brain cells. For miR-1, 88% of downregulated genes contained a 
3′ UTR hexamer seed match, and 76% of genes that were downregulated 
by miR-124 had a similar match. CDS seed matches were also somewhat 
enriched. When miR-124 with mutations in seed region bases 5 and 6 
was transfected into cells, the downregulated genes no longer overlapped 
with genes downregulated by wild-type miR-124. However, when bases 
9 and 10 were altered, 89% of downregulated genes overlapped. Recently, 
similar transcriptome analysis identified a class of functional ‘seedless’ 
targets that pair with 11 central bases of the miRNA18.

Overexpression of miRNAs has also been used to study the  biological 
effects and targets of cancer-related miRNAs. Overexpression of let-7 
decreased the proliferation of liver and lung cancer cells, and more than 
200 transcripts were downregulated in both cell types24. Gene ontology 
analysis of the downregulated genes indicated that they were enriched in 
genes for DNA replication and cell cycle pathways. Similarly,  transfection of 
miR-15a and miR-16 into colon cancer cell lines increased the  proportion 
of cells in cell cycle phase G0/G1 and genes that were downregulated were 
enriched in cell cycle–related genes59. Paradoxically, these downregulated 
cell cycle genes were not enriched in miR-15a or miR-16 seed matches, 
suggesting that much of the effect of these  miRNAs might be indirect.

Biochemical isolation
Experimental approaches

Normalization,
data analysis, statistics

Target prediction algorithm

miRNA recognition-site properties

Complementarity

Evolutionary conservation

mRNA context

Preliminary gene list

Candidate gene list for
experimental testing

Validation:
–Test mRNA and protein
  knockdown
–Identify MRE(s)
–Validate MRE(s) by
  deletion or mutation

Expression profiling

Harvest protein or mRNA
IP: ± cross-linking,

± nuclease digestion,
isolate RNA

Differential expression microarray,
proteomics Deep sequencing, microarray

–Location within 3′ UTR
–AU content

–Lack of secondary
 structure

Seed match

∆G

±
miRNA mimics

or
inhibitors

miRISC

GO,
interactome and
pathway analysis

Figure 1  Methods for identifying miRNA 
targets. Putative target genes can be identified 
by expression profiling of cells in which the 
miRNA is overexpressed or antagonized, by 
biochemical isolation of the miRISC or by target 
prediction algorithms. These methods generally 
identify hundreds of candidate genes or more. 
Bioinformatic analysis of these large candidate 
gene lists for over-represented Gene Ontology 
(GO) terms, enriched biological pathways 
or gene interaction networks can then help 
researchers to select candidate genes to evaluate 
experimentally.
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that immunoprecipitated with endogenous Ago1 and Ago2 (ref. 31). Five 
out of six randomly chosen genes that were sequenced more than once 
were experimentally validated as miRNA targets. However, most of the 
clones were recovered only once, suggesting that the depth of sequencing 
may have been a limiting factor.

The biochemical approach to target identification has mostly been 
used to describe the general features of MREs, rather than to  identify 
specific  targets. Pulldown of Ago-associated mRNAs  usually enriches 
transcripts containing seed matches. Experimental  validation of putative 
miRNA  targets  identified by  immunoprecipitation is high, supporting the 
 usefulness of the method29,30. Immunoprecipitation studies have  identified 
targets whose mRNAs do not decrease after  overexpression of miRNAs29 
as well as unanticipated CDS MREs27,30. However, some  questions remain 
about the utility of Ago  immunoprecipitation for  identifying miRNA 
targets. The miRNAs and mRNAs that are pulled down with Ago1 or 
Ago2 might not be  identical to those found in miRISCs that contain other 
Agos64. Moreover, epitope-tagged Ago has some  drawbacks. Epitope-
tagged Ago proteins can associate with transfer RNAs65,  potentially 
introducing experimental artifacts27. Overexpression of Ago globally 
increases endogenous miRNA  production66,67, which could skew the 
profile of endogenous miRNA-mRNA interactions. As Ago proteins in 
cell extracts can associate with cognate mRNAs after lysis29 some Ago-
immunoprecipitated mRNAs might not be true targets. Finally, the Ago 
pulldowns have the limitation that they identify mRNAs rather than 
 specific MREs and are usually not specific for an individual miRNA.

Pulldowns using miRISC components enrich for all miRNA targets, 
but don’t directly identify mRNAs associated with a specific miRNA. 
To circumvent this problem, a recent study sought to identify mRNAs 
directly bound to transfected biotinylated miR-10a (refs. 68,69). 
However, the results are controversial because the pulled down mRNAs 
were not enriched for known targets or for miR-10a seed matches. 
Moreover, they were mostly abundant ribosomal mRNAs, suggesting 
they might have associated with biotinylated miR-10a nonspecifically. 
Most identified genes were translationally upregulated, rather than being 
 downregulated, by miR-10a. The authors attributed this unexpected 
result to the  presence of weak miR-10a binding sites in the 5′ UTR.

identifying mirisc-bound mres
An important recent development, called Ago HITS-CLIP (high 
 throughput sequencing by crosslinking and  immunoprecipitation), 
directly  identifies miRNA-bound MREs32–34. Nucleic acids are  crosslinked 
by  ultraviolet radiation to miRISC proteins and then  immunoprecipitated 
with an antibody to a miRISC component. Unbound RNA is digested 
to leave miRISC-protected RNA fragments, which are then analyzed 
by high-throughput RNA sequencing to identify both Ago-associated 
 miRNAs and their target MREs. In the first study, protected transcript 
fragments associated with native Ago complexes in mouse brain or 
HeLa cells were most enriched for motifs that matched the seeds of the 
most abundant miRNAs. Fragments of mRNAs were also enriched for 
sequences just after the stop codon or before the polyadenylation site, 
consistent with studies indicating that MREs in the middle of 3′ UTRs 
contribute less to  silencing than those at the ends39. Both the false- positive 
and false- negative rates of the MRE predictions were low in this study. 
Notably, detection of  previously validated miRNA targets  correlated with 
their expression; highly expressed targets were more readily identified. 
Of the enriched sequences, 25% mapped to the CDS and 27% lacked 
a  perfect seed match to the 20 most highly expressed miRNAs. These 
results  support recent findings that miRNAs regulate many genes by 
‘seedless’ or CDS  interactions17,18,20,38,41,70,71.

A HITS-CLIP study in C. elegans32 also found enrichment for 3′ UTR 
seed matches to isolated miRNAs. However, 37% of sequences lacked 

require stringent seed  pairing had the greatest power to predict changes 
in  protein levels, only 33% of the  targets predicted by such algorithms 
showed a change in  protein  expression, suggesting that the  algorithms 
have a high false-positive rate21.

SILAC was also used to analyze the proteome of HeLa cells that 
 overexpressed one of five different miRNAs22. The 3′ UTR hexamer 
motifs that most correlated with changes in protein expression were 
complementary to the miRNA seed for each miRNA. To assess whether 
depletion and overexpression of miRNAs influenced the expression of 
the same proteins, the authors knocked down let-7b. The protein changes 
in cells that overexpressed let-7b and cells in which it was knocked down 
were negatively correlated. However, the effect of knockdown was only 
about one-third as great as that of overexpression. Therefore, miRNA 
overexpression has more of an effect than miRNA antagonism on both 
protein and mRNA expression.

Changes in mRNA expression correlated well with protein changes 
in both studies. Proteomics, like mRNA expression studies,  cannot 
 distinguish between direct and indirect miRNA targets. SILAC 
 experiments are time-consuming, expensive and not accessible to most 
laboratories. Moreover, current methods can resolve only a fraction of the 
proteome at a time. Given these practical challenges, and because mRNA 
and protein  expression changes are highly correlated, microarray analysis 
might be preferred for its simplicity.

identification of mirisc-associated mirna targets
The mammalian miRISC contains a mature miRNA and several proteins, 
including an Ago protein and Tnrc6 (refs. 62,63). Several studies have 
identified miRNA targets by their association with miRISC proteins, 
using immunoprecipitation of epitope-tagged miRISC  components27–30 
or native miRISC31, often while manipulating a  specific miRNA to 
 identify its targets27,29,30 (Fig. 1). The Cohen  laboratory used  microarrays 
to identify mRNAs that immunoprecipitated with  hemagglutinin (HA)-
tagged Ago1 in D. melanogaster S2 cells27. The 89 reproducibly isolated 
mRNAs were enriched for 3′ UTR seed matches, and some contained 
CDS seed matches. When introduced into the luciferase open  reading 
frame, CDS MREs were moderately active in reporter assays. The 
HA-Ago1 immunoprecipitation was performed in transgenic flies with 
mutant or wild-type miR-1, and 108 transcripts were selectively depleted 
in embryos with mutated miR-1. The 11  transcripts that  contained 
miR-1 heptamer seed matches all had some activity by luciferase assay. 
This study highlighted the potential  utility of  biochemical pulldown 
to identify miRNA targets. However, it  captured only 10% of the 
expected number of miR-1 target genes28. A more  sensitive protocol 
was later developed by optimizing  immunoprecipitation conditions and 
 increasing amplification of the mRNAs that were pulled down28.

Several other studies immunoprecipitated tagged miRISC  components 
to identify targets. The Hannon laboratory identified 294 mRNAs that 
bound specifically to myc-tagged Ago2 in cells that  overexpressed 
miR-124a (ref. 29). Of these mRNAs, 67% contained 3′ UTR  heptamer 
miR-124a seed matches. Notably, many mRNAs that were enriched 
in the immunoprecipitation were not  downregulated in the cells that 
 overexpressed miR-124a. However, when their 3′ UTRs were tested by 
luciferase assay, 21 out of 30 were  suppressed. A  similar Ago2 pulldown 
to identify miR-124a and miR-1 targets30  isolated 49% of the  putative 
 miR-124a targets identified by the Hannon  laboratory. Many  putative 
targets had seed matches in the CDS, but not the 3′ UTR. Expression of 
mRNAs with CDS seed matches decreased after  transfection with miRNA, 
but genes with 3′ UTR matches were more strongly  suppressed, consistent 
with  earlier studies27,30. Immunoprecipitation with Tnrc6 has also been 
used to  isolate targets in mammalian cells62 and C. elegans26. Another 
approach to target  identification has been to clone and sequence mRNAs 
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could vary amongst miRNAs. This example of a miRNA that suppresses 
key transcription factors and also directly suppresses their transcriptional 
target genes suggests that some miRNAs function as master regulators by 
downregulating a dense network of genes in the same pathway. Applying 
unbiased systems biology approaches to experimental datasets may help 
to define miRNA function and pinpoint important target genes.

validation of putative target genes
The identification of putative miRNA targets is only the first step. To 
 validate candidate genes, the effect of manipulating the miRNA (by 
 overexpression, knockdown or genetic ablation) on protein and mRNA 
levels of the candidate gene needs to be assessed. An inverse  relationship 
between the gene product (at least the protein) and the miRNA is expected. 
Direct regulation of gene expression by an miRNA is then tested by reporter 
assays that use expression plasmids  incorporating the entire 3′ UTR or 
CDS in cells that have been transfected to  overexpress the miRNA mimic. 
Showing that the entire 3′ UTR of a gene is  regulated by a miRNA adds 
confidence that the transcript is recognized in its native context. Further 
confirmation is provided by identifying the MRE. Candidate MREs can be 
identified using seed-based algorithms or algorithms that do not require 
an exact seed match, such as rna22 or PITA13,42. Direct regulation by the 
miRNA is then confirmed by  mutating or deleting binding residues in 
the reporter and testing for restored expression. Most studies test direct 
regulation by miRNA  overexpression using reporters driven by a strong 
promoter. Showing that a gene can be regulated by physiologically relevant 
levels of the miRNA provides additional evidence that regulation of the 
gene by the miRNA is biologically important.

Some genes that have been identified by experimental approaches 
have candidate CDS MREs. As CDS MREs have a weaker effect on gene 
expression than 3′ UTR MREs, it is important to determine whether 
these potential CDS MREs are functional. To do this, CDS MREs and 
(potentially) their surrounding sequences should be cloned in-frame 
into the CDS of an appropriate reporter27,71. The presence of rare codons 
upstream of a CDS MRE may slow down translation, permitting  miRNAs 
to bind to CDS MREs and effectively to repress gene expression74. This 
fact needs to be considered in designing CDS MRE reporters.

concluding remarks
Genome-wide miRNA target identification methods are constantly 
 improving. Ectopic miRNA expression followed by microarray analysis may 
be the simplest way to identify the biological function and candidate targets 
of a miRNA. This approach is supported by proteomics studies, which have 
provided evidence that changes in the expression of mRNA and  proteins 
 correlate well21,22. However, this strategy has limitations. First,  targets that are 
translationally repressed will be missed. Second,  overexpression of a miRNA 
does not distinguish direct from indirect targets and supraphysiological  
overexpression can introduce artifacts. Knockdown of a miRNA may 
therefore be better than overexpression for identifying miRNA targets in 
a physiological context, although it is less sensitive. Biochemical  pulldown 
methods are continuing to improve and will ultimately provide a more 
specific and sensitive method for identifying miRNA targets.

Although the importance of the miRNA seed region in miRNA  target 
recognition is clear, a subset of biologically relevant MREs lack a  canonical 
seed or are located in the CDS. Filtering miRNA  overexpression or 
 pulldown gene lists by requiring an exact 3′ UTR seed match will  eliminate 
potentially important target genes from  consideration. Therefore, we 
favor an unbiased selection of candidate targets. Gene ontology and 
 interactome analysis or forward genetics can help to pinpoint biologically 
 interesting targets from the hundreds of genes identified by any method. 
The  identification of biologically important targets will be crucial for 
 understanding miRNA function.

a conserved seed match, even after allowing one G•U wobble. CDS 
sequences were significantly enriched for matches to the central region 
of the miRNA, but not for seed matches. The identified MREs were 
found in more accessible regions (lacking secondary structure).

An improved method for isolating protein-associated RNAs, termed 
PAR-CLIP (photoactivatable-ribonucleoside-enhanced crosslinking 
and immunoprecipitation), has also been used to identify miRNA 
 targets34. Cells are cultured with photoreactive 4-thiouridine, which 
can substitute for uridine during transcription, before cross-linking 
and  immunoprecipitation. Protein-bound miRNAs and mRNAs are 
then analyzed by high-throughput sequencing. The incorporation 
of 4- thiouridine substantially improves RNA yields. Because reverse 
 transcription of 4-thiouridine leads to T-C transitions, the  MRE-miRISC 
interaction site can be accurately mapped. PAR-CLIP of Flag- or 
HA-tagged AGO1–4 identified almost 20,000 enriched sequences. Nine 
out of ten of the most enriched heptamers matched the seed sequence 
of highly expressed miRNAs. Fifty percent of the crosslinked candidate 
MREs mapped to the CDS, whereas 46% matched a 3′ UTR. Target site 
identification was tested by antisense inhibition of the 25 most highly 
expressed miRNAs followed by expression profiling. Targets with 
seed matches were more frequently upregulated than targets without 
seed matches. Similarly, mRNAs that were sequenced exclusively in 
the 3′ UTR were more frequently upregulated after the miRNA was 
 antagonized than those with CDS-only sequence clusters.

Although these methods provide an elegant way to identify miRNA 
targets, they involve a technically challenging, multistep protocol. The 
challenges of the procedure need to be weighed against the benefit of 
genome-wide direct identification of miRNA target sites.

gene network analysis of mirna targets
Given the potential of a miRNA to regulate a large number of genes, 
it can be challenging to identify key miRNA targets and functions 
from the long lists of putative target genes generated by the methods 
described above. Gene ontology and interactome analysis can be used to 
probe the features of lists of candidate genes17 (Fig. 1). We applied this 
approach to investigating the biological function of miR-24, a miRNA 
that is  consistently upregulated during cellular differentiation72,73. 
Candidate miR-24 targets were identified by their downregulation after 
 overexpression of miR-24. We found that 248 mRNAs had significantly 
reduced expression, of which 40% were predicted by TargetScan and 
51% had a 3′ UTR miR-24 hexamer seed, suggesting that a significant 
proportion of the downregulated mRNAs were direct targets of miR-24. 
The cellular pathways that were enriched in the downregulated genes 
suggested that miR-24 regulates cell cycle progression and DNA repair. 
Consistent with this hypothesis, overexpression of miR-24 inhibits 
 cellular proliferation and sensitizes cells to DNA damage17,72.

We used the Ingenuity Pathways software to examine the interactome 
formed by the  downregulated genes. The network of genes that were 
 downregulated by miR-24 was enriched for proteins that have key roles 
in cell cycle  progression. E2F2 and MYC formed highly connected nodes 
of this interactome, and the effects of miR-24 on cell cycle progression 
could be reproduced by manipulating E2F2 (a direct target that was not 
 predicted by any algorithm and that lacks a 3′ UTR miR-24 seed match). We 
 suggested, on the basis of these results, that the genes at nodes of a miRNA 
target interactome might be biologically important targets. This idea 
needs to be tested in other experimental systems. Many of the genes in the 
 interactome that are downregulated by miR-24 are key elements of cell cycle 
regulation, including genes that are  transcriptionally regulated by E2F2 
and MYC. These were also validated as direct targets. Most of those also 
lacked a seed match, which is consistent with the Ago HITS-CLIP  findings 
noted above. The importance of seed pairing for target mRNA selection 
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