
Protons and Ca2�: Ionic Allies in Tumor
Progression?

Ion channels and G-protein-coupled receptors (GPCRs) play a fundamental

role in cancer progression by influencing Ca2� influx and signaling pathways

in transformed cells. Transformed cells thrive in a hostile environment that is

characterized by extracellular acidosis that promotes the pathological pheno-

type. The pathway(s) by which extracellular protons achieve this remain un-

clear. Here, a role for proton-sensing ion channels and GPCRs as mediators of

the effects of extracellular protons in cancer cells is discussed.

Maike Glitsch
Department of Physiology, Anatomy and Genetics,

Oxford University, Oxford, United Kingdom
maike.glitsch@dpag.ox.ac.uk

Cancer is a group of diseases that affects one
in three people at some point of their life. De-
spite there being over 200 different types of can-
cer, there are certain hallmarks that are common
to most cancers: self-sufficiency in growth sig-
nals, insensitivity to anti-growth signals, ability
to evade apoptosis and anoikis, limitless replica-
tive potential, altered metabolism (of which the
high glucose consumption of cancer cells due to
the glycolytic breakdown of glucose is a classic
characteristic), sustained angiogenesis, and tis-
sue invasion and metastasis (27, 50, 57).

One important consequence of tumor growth
and altered metabolism of cancer cells is the gen-
eration of a microenvironment that differs quite
substantially from the microenvironment of non-
transformed cells. Tumor tissue is characterized by
disorganized vasculature that includes shunts and
in which blood flow is heterogeneous and may
even reverse direction, resulting in transient and
chronic hypoxic regions within the tumor (16, 41,
42, 51). Furthermore, the interstitial fluid of solid
cancers is characterized by acidosis; in fact, inter-
stitial pH values as low as pH 5.8 have been mea-
sured (158) although the majority of tumors are
less acidic (around pH 6.5–7.0). It was originally
thought that acidification of the interstitial tumor
fluid was a consequence of hypoxia within the
tumor tissue and resulted from glycolytic break-
down of glucose to lactate, which was then ex-
truded from the cells, thereby acidifying the
extracellular fluid. Two lines of evidence suggest
that this may not be the whole story: 1) Glycolytic
breakdown of glucose to lactate also takes place
under aerobic conditions, i.e., extracellular acidifi-
cation does not depend on hypoxic conditions (44);
and 2) cancer cells that are not glycolytically active
still acidify the extracellular milieu (59, 113, 182),
suggesting that lactate extrusion is not essential for
interstitial acidosis. Cancer cells, in addition to
monocarboxylate transporters responsible for lac-
tate extrusion, have highly active sodium-proton

exchangers as well as bicarbonate transporters and
V-type ATPases that extrude protons from cancer
cells, thereby keeping the intracellular pH at phys-
iological levels. In some tumors, there is also
conversion of extracellular CO2 to carbonic acid
via activity of membrane-bound carbonic anhy-
drase 9, and this contributes to the acidification
of the interstitial fluid (20, 36, 69, 155). Hence,
there are a number of distinct mechanisms by
which tumor cells can acidify the extracellular
fluid, and a role of these transporter systems in
cancer and its therapy has been extensively re-
viewed (e.g., Refs. 20, 36, 69).

The fact that cancer cells thrive in an acidic
environment is counterintuitive since homeosta-
sis of pH is thought to be paramount to the
normal functioning of cells and tissues. Proton
concentrations impact on protein structure by
affecting the degree of ionization of the protein,
and this may have consequences for the func-
tional properties of that protein (be it an enzyme,
receptor, channel, transporter, structural, or
other protein). It is thought that cancer cells
have adapted to their hypoxic and acidic envi-
ronment, thereby having a selection advantage
over non-transformed cells that die on pro-
longed exposure to extracellular acidosis and
hypoxia and that this is how hypoxia and acido-
sis promote cancer progression and metastasis
(36, 44, 149). In agreement with this, condition-
ing melanoma cells to an acidic environment
resulted in the generation of highly invasive tu-
mor cells with altered gene expression (108),
whereas increasing tumor pH was shown to de-
crease spontaneous metastases in a mouse
model of metastatic breast cancer (129). How-
ever, the mechanism(s) by which the acidic pH
promotes tumor progression remain unclear.
This review will address the hypothesis that ex-
tracellular protons contribute to cancer progres-
sion through activation of proton-sensing cell
surface receptors and subsequent modulation of
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intracellular Ca2� signaling pathways. The focus
on proton-sensing ion channels and receptors is
unique in the literature and aims to draw atten-
tion to these proteins as novel targets for cancer
treatment.

Intracellular Ca2� Signaling
and Cancer

Various cancer types differ significantly in terms
of morphology, cell of origin, physiology, and
pharmacology, but one thing common to all can-
cer cells is the requirement for intracellular Ca2�

signaling to maintain a proliferating phenotype
(70). How changes in intracellular Ca2� concen-
tration contribute to cancer cell proliferation
and tumor progression has been reviewed in a
number of recent articles (70, 110, 112, 130).

In resting cells, the basal intracellular Ca2�

concentration is very low (between 10 and 100
nM), resulting in a steep Ca2� gradient across the
membrane that favors Ca2� entry over Ca2� ex-
trusion even at positive membrane potentials.
This cytosolic Ca2� concentration is tightly reg-
ulated because increases in intracellular Ca2�

concentration can set about a whole host of dis-
tinct processes within cells, including cell cycle
progression and proliferation (78). Cytoplasmic
Ca2� increases can be generated by two path-
ways: 1) Ca2� influx through Ca2�-permeable ion
channels in the plasma membrane and 2) Ca2�

release from intracellular stores through Ca2�-
permeable ion channels in the store membrane.

Ion channels in the plasma membrane can be
opened by changes in membrane potential, follow-
ing ligand binding, receptor activation, and Ca2�

store depletion or in response to a mechanical
stimulus. Just how much Ca2� enters the cell
through any given ion channel depends on the
membrane potential of that cell, which not only
controls the opening of voltage-gated ion channels
but also the driving force for Ca2� to enter the cell,
with Ca2� influx being greater at negative poten-
tials than at more positive potentials. Ion channels
on the store membrane (also called Ca2� release
channels) are usually activated only upon ligand
binding; the intracellular ligand is Ca2� [triggering
so-called Ca2�-induced Ca2� release (CICR)]
and/or inositol-1,4,5-trisphosphate (IP3). IP3 is
generated in cells subsequent to activation of
plasma membrane receptors [G-protein-coupled
receptors or tyrosine kinase receptors activating
phospholipase C� or �, respectively, which cataly-
ses the conversion of the membrane phospholipid
phosphoinositolbisphosphate (PIP2) into IP3 and
diacylglycerol (DAG)]. Ca2� release from intracel-
lular stores is largely unaffected by the membrane
potential but will depend on the Ca2� store

content, which in turn is determined by the rela-
tive activity of the Ca2� leak pathway from the
Ca2� store and Ca2� store refilling via sarcoplas-
mic endoplasmic reticulum Ca2� ATPase (SERCA)
pumps, as well as the activity of Ca2� release chan-
nels on the store membrane. Termination of the
Ca2� signal is achieved by clearance of Ca2� from
the cytosol via transporters either on the plasma
or store membrane, and their activity therefore
contributes to the shape and duration of the
intracellular Ca2� signal (summary of Ca2� influx
and clearance pathways in FIGURE 1A). Mito-
chondria, lysosomes, endosomes, large dense-
core vesicles, the Golgi apparatus, and the
nuclear envelope have all been shown to act as
Ca2� stores (23, 85, 106, 122), although in the
case of the endosomes this may only be a tran-
sient property (122). Of these additional Ca2�

stores, mitochondria and lysosomes are the best-
understood, and, for mitochondria, roles in can-
cer have been well established (53). It appears
that silencing of mitochondria signaling is im-
portant for tumor cell survival (53) and that Ca2�

release from mitochondria induces cell death
and hence counteracts cancer progression (21,
131). Similarly, lysosomes are important in me-
diating autophagy, which is thought to function
as a tumor suppressor mechanism (55). Since
neither pathway promotes cancer progression in
a Ca2�-dependent manner, mitochondria and
lysosomes (or any of the other additional Ca2�

stores mentioned above, for which roles in can-
cer have not been determined) have not been
included in the schematic.

There are numerous publications demonstrat-
ing differential expression of certain types of ion
channels on the plasma and ER Ca2� store mem-
brane in cancerous tissue (increased or de-
creased expression in cancerous compared with
healthy tissue/cells); there is also ample evi-
dence that interfering with channel expression
can impact on cancer cell proliferation in vitro as
well as in vivo (13, 32, 68, 80, 109, 140). Similarly,
a number of G-protein-coupled receptors (GPCRs)
linking to intracellular Ca2� signaling, such as P2Y
purinoreceptors (P2YRs) (39, 120), calcium-sensing
receptors (CaRs) (128, 134), lysophosphatidic acid
receptors (LPARs) (22, 91, 127), chemokine recep-
tors (CXCRs) (43, 159), and metabotropic gluta-
mate receptors (mGluRs) (100, 142), have been
implicated in tumor progression (24, 88, 90).
Equally, Ca2� release channels on Ca2� store
membranes and intracellular Ca2� store dynam-
ics have been recognized as important targets in
cancer treatment in terms of their ability to pro-
mote proliferation, apoptosis, and angiogenesis
(10, 93, 95, 174). However, it is unclear how the
efficiency of these pathways is affected by the
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local microenvironment in which cancer cells
have to operate. A number of ion channels, for
which there is compelling evidence that they are
involved in cancer progression, are in fact inhib-
ited by extracellular protons (Table 1; this table is
by no means exhaustive). It is therefore difficult
to reconcile how ion conducting activity of these
membrane proteins can be important for cancer
progression when they are inhibited by extracel-
lular protons that accumulate during cancer pro-

gression and promote the disease (but see
outlook). The focus of this review will therefore
be on a group of ion channels and membrane
receptors that are activated or potentiated by
extracelluar protons and that should therefore
constitute prime candidates for mediating pro-
ton-dependent Ca2� signaling involved in tumor
progression (Table 2).

FIGURE 1. Ca2� signaling pathways for changing
cytoplasmic Ca2� concentrations
A: Ca2� entry and extrusion pathways. Ca2� can enter
cells through voltage-dependent and voltage-indepen-
dent Ca2�-permeable channels (VDCCs and VICCs, re-
spectively). Activation of hyperpolarizing channels
[generally K� channels (KCs)] influences voltage-dependent
and -independent Ca2� influx differentially (gray
dotted lines): voltage-dependent Ca2� influx is inhibited
(closure of voltage-dependent Ca2� channels due to hy-
perpolarization of membrane potential), whereas volt-
age-independent Ca2� influx is enhanced
(hyperpolarization increases driving force for Ca2�). The
same scenario applies when Cl�-permeable channels
open (provided opening of Cl�-permeable channels trig-
gers Cl� influx), not depicted here. Cytoplasmic Ca2�

concentrations can also be increased by releasing Ca2�

from intracellular Ca2� stores via release channels (RCs);
these could be either IP3 receptors or CICR channels
(see text). Furthermore, Ca2� leaves Ca2� stores through
leak channels (LCs) in the store membrane, and modula-
tion of these channels also impacts on cytoplasmic Ca2�

concentrations. Ca2� extrusion from the cytoplasm is
achieved through activity of Ca2� pumps/exchangers
both on the plasma membrane [plasma membrane Ca2�

pump (PCP)] and store membrane [store membrane
Ca2� pump (SCP)], and activity of these pumps/exchang-
ers also influences cytoplasmic Ca2� concentrations.
B: phospholipase C (PLC)-mediated Ca2� signaling. Activa-
tion of phospholipase C [following stimulation of a G-
protein-coupled receptor (GPCR) and subsequent activation
of a G protein (GP)] triggers conversion of phosphoinosi-
tolbisphosphate (PIP2) into inositol-1,4,5-trisphosphate
(IP3) and diacylglycerol (DAG). PIP2 is thought to consti-
tutively inhibit some ion channels, including members of
the canonical transient receptor (TRPC) channel family
(TC); breakdown of PIP2 will hence lead to opening of
these channels. DAG has also been shown to directly
open TRPC channels, which are nonselective cation
channels that can trigger changes in cytoplasmic Ca2�

concentration directly and by depolarizing the mem-
brane potential, thereby leading to opening of voltage-
gated Ca2� channels (VGCCs; dotted black line).
Phospholipase C-mediated IP3 formation can also trigger
Ca2� release from Ca2� stores through activation of IP3
receptors (IR). This store depletion can in turn activate
store-operated Ca2� channels (SCs), triggering further
Ca2� influx. Finally, a rise in cytoplasmic Ca2� can cause
the opening of CICR channels [ryanodine receptors
(RRs)] on the Ca2� store membrane and/or open Ca2�-
dependent nonselective cation channels (dotted red
lines) that can be Ca2�-permeable and also increase cy-
toplasmic Ca2� rises by depolarizing the membrane po-
tential sufficiently for voltage-gated Ca2� channels to
open (dotted black line). A rise in intracellular Ca2� con-
centration may also lead to the opening of Ca2�-depen-
dent, nonselective cation channels (dotted red line; NC)
that may be Ca2� permeable and/or trigger opening of
VGCCs (dotted black line).
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Proton-Activated Receptors and
Ion Channels in Cancer
Proton-Activated G-Protein-Coupled
Receptors

A novel family of GPCRs activated upon binding of
protons was recently identified, comprising ovar-
ian cancer gene 1 (OGR1), G-protein-coupled re-
ceptor 4 (GPR4), and T-cell death-associated gene
8 (TDAG8) (94, 139, 175) (Table 3). Of these, only
OGR1 has been shown to link to intracellular Ca2�

signaling via the phospholipase C-IP3 pathway
(139). These receptors are very interesting: they are
active already at physiological pH values (pH 7.4)
and do not desensitize. Hence, their activity mir-
rors extracellular proton concentrations directly
and continuously. Maximal activation of OGR1 oc-
ccurs at pH 6.8, and, depending on the expression
system, these receptors either display a bell-
shaped pH dependence [CCL39 cells (94) with still
elevated IP3 levels at pH 5.6] or saturating re-
sponses [for HEK293 cells determined up to pH 5.6
(94), for CHO cells determined up to pH 5.9 (175)],
suggesting that the cellular environment influ-
ences how active these receptors are at pH values
below 6.8. OGR1 was originally cloned from a hu-
man ovarian cancer cell line (180), but its role in
cancer progression is unclear. For prostate cancer,
OGR1 was reported to act as tumor suppressor
gene (143), whereas OGR1 knockout mice dis-
played reduced melanoma tumorigenesis, indicat-
ing that OGR1 was required for melanoma tumor
progression (89). Interestingly, OGR1 was shown to
be highly expressed in human medulloblastoma
tissue, a pediatric cerebellar cancer originating
from neuronal precursor cells (65), and activation
of these receptors in a human medulloblastoma
cell line triggered activation of the ERK cascade in
response to proton-mediated Ca2� release from
intracellular Ca2� stores (65). This is an important

finding because it demonstrates that a fall in ex-
tracellular pH can impact on gene transcription
and may therefore provide a mechanistic explana-
tion as to how the acidic environment of the tumor
tissue might promote cell survival. Intriguingly, the
ability of medulloblastoma cells to respond to ex-
ternal acidification with gene transcription was lost
upon differentiation of these cells (64). The differ-
entiation-dependent loss of ERK activation was
due to significantly reduced proton-stimulated
Ca2� release from intracellular Ca2� stores as a
result of reduced IP3 formation in differentiating as
opposed to proliferating cells. The reason for
lack of IP3 production in response to an acidic
stimulus in differentiating cells is unclear; there
was no significant change in OGR1 mRNA levels
upon differentiation, which may point toward
impaired coupling of OGR1 to its G protein
and/or to PLC in differentiating cells (64). Alter-
natively, it is possible that functional membrane
OGR1 protein levels were reduced. Regardless of
the reason(s) for the reduced IP3 formation,
these results suggest that only proliferating cells
can translate an acidic extracellular pH into gene
transcription, which is entirely consistent with
the idea that the acidic microenvironment pro-
vides a survival advantage to proliferating (i.e.,
transformed) cells over non-transformed (i.e.,
differentiated) cells.

The fact that protons can directly activate re-
ceptors coupled to phospholipase C is not only
important in terms of Ca2� release from intra-
cellular Ca2� stores but also because phospho-
lipase C activity can influence the activity of
distinct families of ion channels that all have the
potential to modulate Ca2� influx into the cells
in which they are expressed (FIGURE 1B). PIP2 is
the substrate for phospholipase C, and its break-
down following receptor activation has been
shown to impact on the gating of a number of

Table 1. Proton-inhibited ion channels implicated in cancer progression

Ion Channel Cancer Effect of Extracellular Acidosis

Store-operated Ca2�

channels
e.g., Prostate cancer (166), breast cancer (111, 183),
leukemia (61)

83% inhibition at pH 6.89 in platelets (46); 80%
inhibition at pH 6.4 in endothelia cells (6)

Eag1 e.g., Breast cancer, cervical cancer (Ref. 60 and
references therein; Ref. 118)

Voltage-dependent inhibition; for pH 6.0,
inhibition by 50% at �40 mV compared with
pH 7.0 in Xenopus oocytes (160)

Kv1.5 Numerous different cancer tissues (11) 50% inhibition at pH 6.3 compared with pH 7.3
at �40 mV in Xenopus oocytes (148)

TRPC6 e.g., Glioma (33), esophageal cancer (138), gastric
cancer (15), prostate cancer (161)

50% inhibition at pH 5.7 in HEK cells (138)

TRPV6 Prostate cancer (reviewed in Ref. 84) 35% inhibition at pH 6.5; 50% inhibition at pH
5.5 in Xenopus oocytes (121)

Cav3.1 e.g. Astrocytoma, neuroblastoma, renal cancer
(reviewed in Ref. 117)

Reduced Ca2� selectivity over monovalent
cations (reviewed in Ref. 157)

Eag, ether-a-gogo K� channel; Kv, voltage-gated K� channel; TRPC, canonical transient receptor potential channel; TRPV, vanilloid
transient receptor potential channel; Cav, voltage-gated Ca2� channel.

REVIEWS

PHYSIOLOGY • Volume 26 • August 2011 • www.physiologyonline.org 255

Downloaded from journals.physiology.org/journal/physiologyonline (134.206.213.139) on November 2, 2021.



distinct ion channels including members of the
transient receptor potential (TRP) family, various
K� channels, and voltage-gated Ca2� channels
(152). Crucially, PIP2 can both directly act as an

activator and inhibitor of channel opening, and
hence its metabolism can activate or inhibit ion
channel function. Moreover, the products of
phospholipase C activity (DAG and IP3) both

Table 2. Proton-sensing ion channels and GPCRs

H�-activated GPCRs OGR1, TDAG8, GPR4 (reviewed in Ref. 139) OGR1
� Melanoma (blood vessel formation) (89)
� Medulloblastoma (gene expression) (65)
� Prostate cancer (cell migration) (143)

H�-activated channels ASIC1-3 (92) ASIC1

� Glioblastoma (cell cycle and migration) (9, 132)

ASIC2

� Adenoid cystic carcinoma (role unclear) (184)
� Glioblastoma (inhibits ASIC1) (9)

ASIC3

� Adenoid cystic carcinoma (role unclear) (184)
TRPV1 (170) TRPV1

� Prostate cancer (mechanism unclear) (26, 96, 136)
� Glioma (apoptosis) (4)
� Skin cancer (apoptosis) (12)
� Bladder cancer (apoptosis) (79, 87)
� Fibrosarcoma (apoptosis) (49)

H�-potentiated channels TRPC4� and 5 (138) TRPC4

� Medulloblastoma (role unclear) (65)
� Renal cell carcinoma (inhibition of angiogenesis)
(167)

TRPC5

� Neuronal cancer (promotion of neuronal
progenitor differentiation) (141)

TRPM7 (74) TRPM7

� Breast cell cancer (proliferation) (56)
� Gastric cancer (cell survival) (83)
� Nasopharyngeal carcinoma (cell migration) (18)
� Pancreatic epithelia (proliferation) (185)
� Mesenchymal stem cells (survival) (19)
� Head and neck carcinoma (proliferation) (73)
� Hepatoma (proliferation) (107)

P2X2 homomers Not investigated
P2X2�3 heteromers
P2X3 homomers (for high ATP levels)
(47,150,151)
TREK2 (137) Not investigated
GIRK1/4 heteromers (99) GIRK1/4

� Lung cancer (role unclear) (123, 156)
� Breast cancer (role unclear) (30, 124, 171)

Kv1.3 (145) Kv1.3

� Lung adenocarcinoma (cell proliferation) (71)

H�-potentiated GPCRs P2Y4 (176) P2Y4
�Colon cancer (role unclear) (116)

ASIC, acid-sensing ion channel; TRPV, transient receptor potential channel of the vanilloid family; TRPC, canonical transient receptor
potential channel (� denotes splice variant of the TRPC4 channel investigated); P2X, ATP-gated ion channel; TREK, TWIK (two-pore,
weakly inwardly rectifying)-related K channel; OGR1, ovarian cancer G-protein-coupled receptor 1; TDAG8, T-cell Death; GPR4,
G-protein-coupled receptor 4; �, negative effect on tumor progression; �, positive effect on tumor progression and/or overexpression
compared with normal tissue.
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influence channel opening: DAG has been shown
to directly open certain members of the canoni-
cal TRP (TRPC) channel family (165), whereas
IP3, by promoting Ca2� release from intracellular
Ca2� stores, indirectly controls the activity of
Ca2�-activated and store-operated ion channels.
Hence, activation of phospholipase C-coupled
receptors can lead to modulation of a number of
distinct ion channels that can either promote or
reduce Ca2� influx into cells.

Acid-Sensing Ion Channels

Acid-sensing ion channels (ASICs) are nonselective
cation channels that open upon binding of extra-
cellular protons and can be inhibited by amiloride
(Table 4). To date, four genes coding for ASIC sub-
units have been identified: ASIC1 (two splice vari-
ants, a and b; b not in humans), ASIC2 (two splice
variants, a and b), ASIC3 (three splice variants),
and ASIC4 (two splice variants) (29). ASIC2b and

ASIC4 do not form functional ion channels when
expressed as homomers, but ASIC2b can form
functional heteromultimers with ASIC2a and
ASIC3 (29, 62, 92). ASIC1a was thought to be par-
ticularly Ca2� permeable, but recent evidence sug-
gests that this may not be true in the presence of
physiological extracellular Na� and Ca2� concen-
trations (135, 187). Intriguingly, serine protease ac-
tivity (which can be induced following a fall in
extracellular pH) was shown to shift ASIC1a pro-
ton sensitivity to higher proton concentrations
(half-maximal activation of ASIC1a at pH 5.8 fol-
lowing trypsin treatment compared with pH 6.6
under control conditions) while leaving the de-
sensitisation kinetics of the channel unaffected
(125). Thus the pH sensitivity of ASIC channels
can be shifted following proton-induced pro-
tease activity.

Different combinations of ASIC subunits yield
distinct ion channels that can be distinguished in

Table 3. Proton-activated G-protein-coupled receptors

GPCR Transduction Cascade pHA and pH0.5 pH of Maximal
Response

Desensitization
Properties

OGR1 Phospholipase C (IP3 � DAG) pHA � 7.6 6.8 Not desensitising
pH0.5 of �7.4

GPR4 Adenylate cyclase pHA � 7.8 6.8 n.d.
pH0.5 of �7.55

TDAG8 Adenylate cyclase pHA � 7.4 6.8 n.d.
pH0.5 of �7.0

Values are from Refs. 94, 175. pHA, pH threshold for activation; pH0.5, pH giving half-maximal response; n.d., not determined.

Table 4. Proton-activated ion channels

Ion Channel
Subunit

Permeability pHA and pH0.5 pH of Maximal
Response

Desensitization Properties

ASIC1a Nonselective for cations pHA of �7.0 5.5 (173) Near complete within 10 s at pH 6.0
pH0.5 of �6.8

ASIC1b Preference for K� over other
cations

pHA of �6.5
pH0.5 of �6.2

5.3 Full within 5 s at pH 6.0

ASIC2a Nonselective for cations pHA of �6.0
pH0.5 of �4.9

n.d. Partial within 5 s at pH 5.0 (within 100 s
in Ref. 187)

ASIC2b No functional homomers n.d. n.d. n.d.

ASIC3 Nonselective for cations pHA � 7.0
pH0.5 of �6.6

6.0 Partial at pH 7.0 (181) or below pH 4.0
(172); full within 5 s at pH 6.0 (187)

ASIC4 No functional homomers n.d. n.d. n.d.

TRPV1 Nonselective for cations with
preference for Ca2�

pHA � 6.0
pH0.5 of �5.4

pH4.4 Not apparent (163)

pH values for activation threshold and half-maximal activation of the current are given for homomultimers and are extracted from Refs. 8, 29,
63, 92, 163 unless otherwise indicated.
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terms of proton-sensitivity, pH optima, and de-
sensitisation kinetics (Table 3). This is important
since it allows cells to respond differentially to
varying extracellular proton concentrations.
Small changes in extracellular pH activate ASIC
channels that give rise to fully desensitizing cur-
rents (containing ASIC1a/b,2b), whereas large
proton concentration changes activate ASIC
channels that generate biphasic currents with a
rapidly desensitizing and a sustained component
[ASIC2a (187)], meaning that a large drop in ex-
tracellular pH will result in persistent activation
of channels that contain the ASIC2a subunit. Re-
garding desensitization properties of ASIC3
channels, there are contradictory reports in the
literature, which may reflect the use of different
expression systems and/or extracellular proton
concentrations: ASIC3 homomers expressed in
oocytes were found to be rapidly desensitizing at
pH 6.0 (187), whereas ASIC3 homomers ex-
pressed in COS7 cells (below pH 4.0) and CHO
cells (pH 7.0) were non-inactivating (172, 181).

There are only few reports looking at a poten-
tial role for ASICs in cancer progression. The
functional expression of ASIC2a and 3 in adenoid
cystic carcinoma but not healthy control cells has
been suggested as a marker for these cancer cells
(184); however, their functional role in these
cells remains unclear. Human high-grade glioma
cells were found to have a constitutively active
Na� conductance that could be blocked by
amiloride and that was not present in cells from
normal brain tissue or low-grade or benign tu-
mors (9). Interestingly, ASIC1 was expressed in
all tissues under investigation (normal human
brain tissue, glioblastoma tissue, glioma-derived
cell lines), whereas ASIC2 was only expressed in
normal tissue and in less than half of the malig-
nant tissue/cell lines. The constitutive amiloride-
sensitive current was shown to be mediated by
ASIC1 and is thought to result from lack of
plasma membrane expression of ASIC2, suggest-
ing that ASIC2 acts as an inhibitor of constitutive
ASIC1 activity in these cells (9, 14, 169). Impor-
tantly, pharmacological block or knockdown of
ASIC1 inhibited acid-induced currents and cell
migration in glioblastoma cells (81, 169). This
probably reflects a role for ASIC1 channels in vol-
ume regulation during the cell cycle and migration in
these cells (132). The ability to change shape and
volume is thought to be a crucial property of cancer
cells since it enables them to migrate through narrow
spaces (i.e., promotes invasion) as well as enhances
cell proliferation (86, 146). Hence, the increasing pro-
ton concentrations may progressively stimulate
proliferation rates and support tissue invasion by
facilitating shape changes in isolated tumor cells. An
important implication of these studies is that ASICs

can be constitutively active and that increasing
proton concentrations may then potentiate the
constitutive channel function, thereby matching
channel activity to environmental conditions.
ASICs might hence be able to contribute to cancer
progression by keeping the membrane potential at
more depolarized potentials, thereby affecting the
opening of voltage-gated ion channels and/or the
Ca2� driving force. Furthermore, ASICs have been
proposed to be involved in the perception of pain
in tumors, suggesting that neuronal ASICs can
sense and respond to proton concentrations in or
around tumor tissue (92, 98, 186).

Transient Receptor Potential Channel
Vanilloid Subfamily 1

Transient receptor potential channel vanilloid sub-
family 1 (TRPV1) channels are cation channels with
a high permeability for Ca2� (17) that are activated
by a number of distinct stimuli including heat,
vanilloid compounds (most notably capsaicin),
camphor, piperine, garlic, and the endocannabi-
noid anandamide (168). Intriguingly, extracellular
protons exert both potentiating and activating ef-
fects on TRPV1: protons potentiate the effect of
capsaicin (at pH 6.3) (17) as well as directly open
TRPV1 channels in the absence of any other stim-
ulus provided the pH falls below pH 5.9 (163) (Ta-
ble 2). These two proton-dependent effects are not
mediated by the same amino acid residues, sug-
gesting that, depending on the stimulus, TRPV1
channels can utilize distinct opening states with
different properties that may convey distinct sig-
nals to cells (76, 163). TRPV1 channels are thought
to be the only members of the TRPV subfamily that
are activated by protons (35), although heterologu-
ously expressed TRPV4 was also shown to be acti-
vated by protons in the absence of extracellular
Ca2� (154).

There is substantial evidence that TRPV1 is in-
volved in the mediation of cancer pain; this is
particularly true for bone cancer pain: inhibitors of
TRPV1 channels reduce bone cancer pain (48, 82,
104, 114, 115), and importantly it was found that
the acidic microenvironment of the bone cancer
was in part responsible for the TRPV1-mediated
pain perception (164, 186), crucially demonstrating
that the high proton concentration found in and
around solid cancers can be sensed by proton-
sensing ion channels on nearby neurons. It is,
however, unclear what role TRPV1 expressed in
cancer cells plays in the progression of cancer.
TRPV1 is functionally expressed in human prostate
cells (136), its expression is upregulated in trans-
formed cells (26), and its activation induces Akt and
ERK activation (96), suggesting that TRPV1 activation
promotes prostate cancer progression (however,
see Ref. 188 for TRPV1-mediated apoptosis of
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prostate cancer cells). In contrast, other reports
looking at a number of different types of cancers
find that activation of TRPV1 leads to induction of
apoptosis in these cancer cells and that high levels
of expression suggest a better prognosis for pa-
tients (4, 12, 49, 79, 87, 105), which raises concerns
for the use of TRPV1 antagonists in controlling
cancer pain (12). In agreement with this dual and
contradictory role for TRPV1 channels in cancer
progression, the TRPV1 agonist capsaicin has
been reported to act both as inducer of apoptosis
in cancer cells as well as carcinogen or co-car-
cinogen promoting tumor progression, and more
recently it was suggested that capsaicin may not
always mediate its pro-cancerogenic effects
through TRPV1 (see Ref. 67 and references
therein).

Most studies looking at a role for TRPV1 in can-
cer use capsaicin for activation of the channel. As
mentioned above, this gives rise to an open state
that is distinct from that activated by protons, and
this may in part explain the lack of evidence of
involvement and/or the contradictory results ob-
tained in different cell types.

Proton-Potentiated Ion Channels
and Receptors in Cancer

Apart from directly gating ion channel opening,
extracellular protons can facilitate ion channel
function by binding to allosteric sites, thereby pro-
moting ion flux through the channel protein. These
channels may influence intracellular Ca2� signal-
ing by either being Ca2� permeable or by changing
the driving force for Ca2� entry (see introduction).

Transient Receptor Potential Channels

Canonical transient receptor potential channels
(TRPC) are nonselective cation channels that are
activated following stimulation of receptors cou-
pling to phospholipase C and D (52, 168). Two of
the seven members of this channel family, TRPC4�

(short TRPC4 splice variant) and TRPC5, have a
bell-shaped dependence on extracellular pH with
maximal responses around pH 6.5 and potentia-
tion of the TRPC-mediated current already at phys-
iological pH (pH 7.4) (138). In contrast, the long
TRPC4� splice variant is inhibited by increases in
extracellular proton concentration (153), as is
TRPC6 (138) (Table 1). Hence, depending on the
TRPC subunit (and/or splice variant) expression,
extracellular acidosis can either potentiate or in-
hibit current flow through these channels.

TRPC4 downregulation is thought to advance an-
giogenesis (which is required for tumor progression)
in renal cell carcinoma (167), and TRPC5 promotes
differentiation of proliferating neural progenitor
cells (141), suggesting that neither channel supports

cancer progression. However, in human medullo-
blastoma cells, activation of proton-sensing GPCRs
led to activation of TRPC-like ion channels and
subsequent Ca2� influx (65) that was lost upon
differentiation of these cells (64). Medulloblastoma
cells express TRPC1, 3, 4, 6, and 7, with TRPC4
being the dominant TRPC subunit (64), and impor-
tantly TRPC4 channels were downregulated follow-
ing differentiation, suggesting that these channels
play a role in the proliferative state of these cancer
cells. This notion is supported by the finding that
TRPC4 channels are highly expressed in native
granule precursor cells (the cells of origin for the
medulloblastoma type under investigation in Refs.
65, 66) in the proliferative state but that their
expression decreases dramatically during/fol-
lowing differentiation of these cells (66). This is
interesting because, just like in proliferating
transformed tissue, there are also acidotic con-
ditions in proliferating normal tissue during nor-
mal development (103), which may point toward
a common mechanism through which external
acidosis influences proliferation in transformed
and developing tissue. Furthermore, it seems
plausible that proton-sensing GPCRs should trig-
ger opening of ion channels that are potentiated
(rather than inhibited) by extracellular acidosis.

TRPM7, a member of the melastatin TRP chan-
nel family, has been reported to be a Ca2�- and
Mg2�-permeable, constitutively open ion channel
that is ubiquitously expressed and responsible for
Mg2� uptake into cells (Refs. 38, 45, but see Ref. 75
and reply in Ref. 133). Inward currents through
these channels were shown to be dramatically in-
creased by decreasing the extracellular pH; maxi-
mal potentiation was seen at pH 3.0 with currents
already increased at pH 7.0 (74). Mg2�, just like
Ca2�, has been shown to be involved in tumor
growth and progression, and tumor cell Mg2� con-
tent correlates positively with proliferation rates
(reviewed in Refs. 5, 178). The fact that influx of
both of these metal ions can be potentiated by
extracellular protons is important, since it supports
the idea that protons promote cancer progression
and provides a mechanism whereby this might be
achieved (Mg2� and Ca2� influx). In agreement
with this, TRPM7 channels have been implicated in
breast cancer cell proliferation, gastric cancer cell
survival, migration of nasopharyngeal carcinoma
cells, pancreatic epithelial and hepatoma cell prolif-
eration, head and neck carcinoma cell proliferation
and mesenchymal stem cell survival (18, 19, 56, 73,
83, 107, 185). However, it is possible that the cancer-
promoting effect of TRPM7 is independent of Mg2�

influx through these channels and that other prop-
erties of this intriguing protein are important.
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ATP-Gated Ion Channels

P2X receptors are ATP-gated nonselective cation
channels, and a role for ATP-sensing receptors in
cancer progression is supported by a large body of
evidence in the literature (147). Of the seven P2X
subunits (P2X1–7), P2X2 and P2X3 homomers as
well as P2X2/3 heteromers are potentiated by extra-
cellular protons (Refs. 47, 150, 151; Table 2). The
two P2X subunits differ in their pattern of pH de-
pendence: P2X2 homomers displayed an increase
in current size between extracellular pH values of pH
8.3–6.3 (151), whereas for P2X3 the main potentiating
proton effect occurs between pH 7.4 and 6.4 for this
receptor (47). Both P2X3 and P2X2/3 receptors have
been implicated in cancer pain (54, 77, 177); how-
ever, it is unclear whether their ability to sense extra-
cellular protons is involved in this process.

K� Channels

TREK2, GIRK1/4, and Kv1.3 are all K� channels
that can profoundly influence intracellular Ca2� sig-
naling by hyperpolarizing the membrane potential,
resulting in potentiation of voltage-independent
Ca2� influx pathways and inhibition of voltage-
dependent ones. K� channels are thought to play a
key role in cancer progression (179), and it appears

that many if not most K� channels are inhibited
rather than potentiated by extracellular acidosis (62).

TREK 2 channels are members of the two pore-
domaine K� channel family, and currents through
these channels were significantly increased at pH
6.0 compared with pH 7.4, and TREK2 currents are
already potentiated at physiological pH. This effect
was dependent on a histidine residue, confirming
that it was mediated by proton biding to the chan-
nel protein itself (137). There are no reports on
TREK2 and cancer progression.

GIRK1/4 heteromers belong to the family of G-
protein-coupled, inwardly rectifying K� channels
that are potentiated by a drop in extracellular pH
through binding of protons to a histidine residue
on the channel protein. The potentiating effect of
extracellular protons was already apparent at pH
7.4 compared with pH 8.4 and saturated between
pH 6.2 and pH 5 (99). Intriguingly, GIRK1 is ex-
pressed in human lung cancer cell lines and tissue,
where its expression levels correlated with malig-
nancy of the disease (123, 156), and both GIRK1
and 4 are expressed in human breast cancer cell
lines (30, 124) and form functional channels (171),
suggesting a role for these channels in lung and
breast cancer progression.

Voltage-gated Kv1.3 channels were shown to dis-
play decreased inactivation but also reduced cur-
rent amplitude at low external pH (pH 6.5 and 5.5),
resulting in prolonged opening (albeit with smaller
amplitude) under conditions of external acidosis
(144). Expression of these channels has been inves-
tigated in a number of different cancer tissues, in-
cluding breast cancer, lung cancer, prostate cancer,
and glioma cells (1–3, 11, 40, 72, 126), but reports
differ quite substantially with regard to expression
levels and correlation with malignancy of the tumor
tissue. It appears that for a number of cancers, Kv1.3
expression either does not change with increased
tumor malignancy or is in fact downregulated (1, 11,
40, 126). Furthermore, some studies used broad-
spectrum K� channel blockers rather than Kv1.3-
specific inhibitors to assess impact of inhibition of
Kv1.3 channel activity on cancer cell proliferation.
Importantly, however, in human lung adenocarci-
noma, it was shown that either pharmacological
block of Kv1.3 channel function using a selective
Kv1.3 blocker or knockdown of Kv1.3 significantly
decreased cell proliferation and, in the case of the
Kv1.3 blocker, tumor volume in vivo (71).

Not only ion channels but also GPCRs can be
boosted in their function by extracellular protons.
P2Y4 receptors belong to the family of metabo-
tropic ATP receptors and are potentiated by decreas-
ing extracellular pH [increase in efficiency between
pH 7.5, 6.5, and 5.5 (176)]. These receptors are found
in human colon cancer cells (25, 28) and are overex-
pressed in human colon cancer tissue with respect to

FIGURE 2. pH-profile of proton-sensing ion channels and GPCRs
Proton-sensing ion channels have different degrees of dependence on extracellular pH
(pHo). Brown/orange indicates proton-activated receptor or channel; purple/blue sym-
bolizes proton-potentiated receptor or channel. TRPV1 responses to heat or capsaicin
can be potentiated by extracellular acidosis (only pH value tested was pH 6.3), and a
further significant decrease in pH activates TRPV1 channels independently of the pres-
ence of other stimuli. Different channels/receptors will respond to distinct extents of
external acidosis, thereby providing a unique pH-dependent profile of active channels
in cells. For some channels, not the whole pH spectrum shown here was analyzed: for
TREK2, the lowest pH level investigated was pH 6.0; for P2X3, the lowest pH value
was pH 5.8, whereas for P2X2 it was pH 6.3.
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tumour-free tissue (116), which points toward a role
for these receptors in tumor cells.

Outlook

Different cancer cells express distinct subsets of
channels and receptors that define the properties
of those cells. Depending on the extracellular pH,
distinct ion channels and/or receptors may be
recruited or potentiated–and, indeed, inhibited
(FIGURE 2). This raises the intriguing possibility that
the presence of increasing concentrations of extra-
cellular protons selectively switches on and off dis-
tinct ion channels and/or receptors, thereby translating
the extracellular pH into spatio-temporally distinct in-
tracellular Ca2� signals that induce pH-dependent,
distinguishable responses in the cells in which they
occur. It is well established that different Ca2�

signals can give rise to expression of diverse sets of
genes (31, 34, 37) and that Ca2� microdomains are
key in determining which intracellular processes
are initiated (101, 119). These microdomains will
be determined to a significant extent by the chan-
nel proteins responsible for Ca2� influx, which, in
turn, depend in their activity on the local microen-
vironment. However, the impact of local acidosis
on receptor and ion channel-mediated signaling in
tumor cells is only rarely addressed. For cancers
that do not form solid tumors (e.g., leukaemias),
acidosis of the microenvironment is unlikely to
occur, but for cancers generating solid tumors ex-
tracellular acidosis is a factor that likely impacts on
cell surface receptors of the cancer cells.

A number of ion channels and receptors that are
inhibited by protons are overexpressed in cancer-
ous tissue, and it could be that this overexpression
compensates for diminished channel or receptor
function in an increasingly acidic environment.
Likewise, a lack of change in expression levels of a
channel or receptor protein does not necessarily
mean lack of change in activity of that protein: if its
function is potentiated by extracellular protons,
then there is no need for upregulating its expres-
sion as the increasing acidification will achieve
augmented responses from these proteins by de-
fault. There is also evidence that ion channels have
functions beyond their ion-transporting ability,
and it may be that these ion-independent func-
tions help promote cancer progression: Voltage-
gated Ca2� channel subunits can function as
transcription factors (7), and ion channels can also
be expressed on intracellular membranes (45),
which would mean that they are not affected by the
acidotic extracellular conditions. Furthermore, ion
channels may not need to conduct ions to exert
effects at the plasma membrane. For EAG K� chan-
nels, it was shown that a conformational change
of the channel protein was sufficient to activate

intracellular signaling cascades leading to cell prolif-
eration (58), and it is thought that the �-subunit of
Na� channels can promote cell-cell adhesion (97).
All these ion-independent channel functions can at
least in part explain the seemingly contradictory
finding that ion channels, which are inhibited by
extracellular protons, play a crucial role in cancer
progression that is accompanied by acidosis of the
tumor tissue. However, if a key function of proton-
inhibited ion channels is ion-transfer-indepen-
dent, then this requires that Ca2� influx, which is
necessary for cancer progression, is managed
by proton-independent and/or proton-activated
(or proton-potentiated) channels. It is likely that
proton-sensing receptors and ion channels play a
pivotal role here since they have the ability to
faithfully report increases in extracellular proton
concentration by translating them into intracellu-
lar Ca2� signaling. It should be noted, however,
that the impact of external acidosis on ion channels
(such as channels given in Table 2) is generally not
tested in native cancer cells but in expression sys-
tems transfected with the channel protein of interest,
and it can therefore not be ruled out that channels
that are inhibited by extracellular protons in expres-
sion system may not be inhibited by acidic extracel-
lular conditions in native cancer tissue.

One limitation of proton-sensing receptors and
ion channels is that they may exhibit desensitiza-
tion upon prolonged exposure to protons (see
Table 4). However, this does not pose a problem for
all channels or receptors: they do not all (fully) de-
sensitize (e.g., OGR1, ASIC2a, ASIC3, TRPV1) or may
change their conductance state with increasing
pH (ASIC1). Additionally, constitutively active
channels monitor extracellular acidification con-
tinuously [e.g., TRPM7; constitutive activity also
found in TRPC5 (138), TRPC4 (102), ASIC1]. Con-
stitutive channel activity combined with proton
sensitivity of this channel is hence a very efficient
way for cancer cells to gradually give more weight
to this channel, as ion flux through it will increase
with rising extracellular proton concentrations. Fi-
nally, it is possible that intermittent blood flow,
which is observed in tumor tissue, plays an impor-
tant role in changing local proton concentrations,
thereby allowing (partial or full) recovery from de-
sensitization. Intermittent blood flow is crucial
for tumor progression since it permits reoxygenation
of hypoxic regions [which is important for cell sur-
vival of non-transformed host stromal cells such as
endothelia, fibroblasts, macrophages, lymphocytes,
mast cells, myofibroblasts, etc. (42)] (162). However,
protons are very small and hence have a very high
charge density. It therefore remains to be established
whether extracellular proton concentrations change
significantly with time and to a similar extent as O2

levels to allow recovery from desensitization.
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More research is needed to understand the im-
pact that protons have on tumor cells and how
increasing proton concentrations can promote the
transformed phenotype. It seems plausible that in-
creasing proton concentrations trigger expression
of genes that support cell survival under increas-
ingly hostile conditions through activation and/or
potentiation of proton-sensing receptors and
channels that are located in the plasma membrane
and hence sense the acidic environment. Expres-
sion of proton-sensing proteins/signaling cascades
may therefore be considered as a contributing fac-
tor of transformation of cancer cells. �
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clared by the author(s).
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