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Structure and mechanogating 
mechanism of the Piezo1 channel
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Wenhao Liu1,2,3,5, Tingxin Zhang1,2,3,5, Meng-Qiu Dong4, Jiawei Wang1, Xueming Li1,2 & Bailong Xiao1,2,3

The evolutionarily conserved Piezo proteins, including Piezo1 and 
Piezo2, have been established as the long-sought-after mechanosensi-
tive cation channels in mammals1–4. Piezo channels have crucial roles 
in various mechanotransduction processes5,6. For example, Piezo1 
expressed in blood vessels is crucial for sensing blood-flow-associated 
shear stress for proper blood vessel development7,8, whereas Piezo2 
mediates touch9–12, proprioception13, airway stretching and lung 
inflation14. Furthermore, mutations in Piezo genes have been linked to 
several hereditary human diseases that involve mechanotransduction15.

Piezo proteins represent a distinct class of membrane proteins 
with numerous transmembrane (TM) helices1,16. The full-length 
2,547-residue mouse Piezo1 heterologously expressed in HEK293T 
cells and purified2 has been shown to mediate mechanosensitive cation 
currents when reconstituted into lipid bilayers2,17, demonstrating its 
ability to form intrinsically mechanosensitive cation channels. In cells, 
Piezo channels can respond to various forms of mechanical stimulation, 
including poking, stretching and shear stress1,8,18.

A medium-resolution cryo-electron microscopy (cryo-EM) structure 
of mouse Piezo1 has been previously determined, revealing its three-
bladed, propeller-shaped trimeric architecture3. Combining structural 
and functional characterizations, we have proposed that the complex 
mouse Piezo1 might be divided into the central ion-conducting 
pore module and the peripheral blade-like mechanotransduction 
modules3,4,19. However, only 14 apparent TM helices in each subunit 
were resolved, and an alanine model of 492 residues together with 227 
residues of the C-terminal extracellular domain (CED) resolved by 
X-ray crystallization was built3. Thus, we set up to determine high-
resolution structures of Piezo1 and to functionally reveal its key mech-
anotransduction components.

Structure determination of mouse Piezo1
On the basis of the analysis of 10,171 micrographs with approximately 
2.8 million particles, we determined a structure of mouse Piezo1 to an 

overall resolution of 3.97 Å (Extended Data Figs 1 and 2, Supplementary 
Fig. 1 and Supplementary Table 1). Overall, the central region including 
the intracellular beam and the TM region, which contains the 14 TM 
helices resolved in the previously determined structure3, has clearly 
better resolution (3–4 Å) than the distal blades and the central cap 
(4–7 Å). We identified 12 additional TM helices that reside in the 
distal blade (Fig. 1b), which became better resolved when the periph-
eral blades were subjected to local refinement (Extended Data Figs 2 
and 3a). The connections between the N and C termini of the CED and 
the outer and inner helices (OH and IH, respectively) were also better 
resolved after local refinement (Extended Data Figs 2 and 3b), allowing 
assignment of the OH and IH from each subunit. We built and refined 
a structure model for Piezo1, which supports important assignments 
to the major structural domains as shown in Fig. 2, Extended Data  
Fig. 4 and Supplementary Fig. 1. Consistent with the previous 
structure3, mouse Piezo1 possesses a three-bladed, propeller-shaped 
architecture that comprises the central cap, three peripheral blades and 
three long intracellular beams (Fig. 1a). The diameter from the top view 
and the axial height of the structure are 185 Å and 140 Å, respectively 
(Fig. 1a, middle).

The unusually curved peripheral TM blade
The 24 peripheral TM helices in each subunit are organized into 12 
parallel pairs (Fig. 2a), extending from the central OH–IH pair to the 
periphery in a highly curved configuration (Figs 1b and 2a). When 
viewed perpendicularly to the plasma membrane plane, each TM blade 
twists in a clockwise manner to form a half-circled superhelical struc-
ture, resembling the blade of a typical propeller (Fig. 1). The proximal 
TM25–TM36 and peripheral TM13–TM24 seem to segregate into two 
TM segments, which form a 100° angle (Fig. 1b, left). Notably, when 
viewed parallel to the plasma membrane plane, the peripheral TM13–
TM24 form a 140° angle relative to the proximal TM25–TM36 (Fig. 1b, 
middle), which might reside in the normal plasma membrane plane. 

The mechanosensitive Piezo channels function as key eukaryotic mechanotransducers. However, their structures and 
mechanogating mechanisms remain unknown. Here we determine the three-bladed, propeller-like electron cryo-
microscopy structure of mouse Piezo1 and functionally reveal its mechanotransduction components. Despite the lack of 
sequence repetition, we identify nine repetitive units consisting of four transmembrane helices each—which we term 
transmembrane helical units (THUs)—which assemble into a highly curved blade-like structure. The last transmembrane 
helix encloses a hydrophobic pore, followed by three intracellular fenestration sites and side portals that contain pore-
property-determining residues. The central region forms a 90 Å-long intracellular beam-like structure, which undergoes 
a lever-like motion to connect THUs to the pore via the interfaces of the C-terminal domain, the anchor-resembling 
domain and the outer helix. Deleting extracellular loops in the distal THUs or mutating single residues in the beam impairs 
the mechanical activation of Piezo1. Overall, Piezo1 possesses a unique 38-transmembrane-helix topology and designated 
mechanotransduction components, which enable a lever-like mechanogating mechanism.
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Such an organization seems to place TM25–TM36 in a normal plane, 
but TM13–TM24 in a highly curved membrane plane. However, it 
remains possible that the curved organization of the TM helices might 
be due to removal of the purified Piezo1 proteins from the membrane. 
Characteristically, TM13, TM17, TM21, TM25 and TM29 form 
L-shaped helical structures with one or two preceding short helices, 
namely TM13preα1, TM17preα1, TM21preα2, TM25preα2 and TM29preα2, 
respectively, which are positioned parallel to the membrane and col-
lectively form an intracellular helical layer immediately underneath 
the membrane (Fig. 2a and Extended Data Fig. 3a), which might help 
to stabilize the curved TM blade in the membrane. The highly curved 
TM blade and the intracellular helical layer might represent unique 
structural features not only for mechanosensing and transduction but 
also for inducing local membrane curvature.

The THU repeats and a 38-TM topology model
The assignment of residues into the peripheral TM25–TM36 revealed 
three repetitive folds containing four TM helices each, which we term 
THUs (Fig. 2 and Extended Data Figs 4, 5). Within each THU, the first 
two TM helices, closely spaced with a short extracellular linker, are 
folded towards the central end (referring to the OH–IH pair) of the 
TM blade. The second TM helix folds backward to the distal end and  
connects to the third TM helix, which connects to the fourth TM 
through an extracellular linker of 30–50 residues. Two consecutive 
THUs are connected through a relatively long intracellular loop, 
which spans all eight TM helices and consequently arranges the four 
pairs of TM helices in series (Fig. 2). TM25–TM28, TM29–TM32 and  
TM33–TM36 form THU7, THU8 and THU9, respectively (Fig. 2). The 
loop that links TM27 and TM28 was experimentally confirmed to be 
located extracellularly (Extended Data Fig. 6).

On the basis of the folding characteristics of the THUs, topology and 
secondary structure prediction, and cross-linking results (Extended 
Data Figs 4, 5, 7 and Supplementary Fig. 1), the structurally revealed 
TM13–TM16, TM17–TM20 and TM21–TM24 helices were assigned 
to THU4, THU5 and THU6, respectively. These six tandem THUs con-
stitute the highly curved TM blade (Fig. 2). Many topology prediction 
programs have predicted 12 TM helices in the unresolved N-terminal 
region of approximately 500 residues (Extended Data Fig. 5).  
Each 4-TM bundle of the predicted 12 TM helices follows the typical 
folding features of the THU. In line with the prediction, the second 
extracellular loops in each THU have been experimentally verified 
to be located extracellularly20 (Fig. 2b). Furthermore, we identified 
residues from the linkers of TM4–TM5 (THU1–THU2), TM8–TM9 

(THU2–THU3), TM16–TM17 (THU4–THU5) that cross-linked with 
residues in the intracellular loop of TM28–TM29 (THU7–THU8) or 
TM32–TM33 (THU8–THU9) (Extended Data Fig. 7 and Fig. 2b), indi-
cating the intracellular localization of these loops. Based on these lines 
of evidence, we assign the N-terminal 12 TM helices to THU1–THU3. 
Therefore, the peripheral 36 TM helices are folded into nine tandem 
repetitive THUs to form the unique TM blade. Together with the OH 
and IH, Piezo1 might possess an unprecedented 38-TM topology with 
a total of 114 TM helices in the trimeric channel complex.

The intracellular beam
Three characteristic long density rods roughly 90 Å in length are 
exposed on the intracellular surface of THU7–THU9 and the 
C-terminal domain (CTD), and are termed the beams (Figs 1, 2).  
We were able to assign H1300–S1362 to the beam, which is appar-
ently kinked at residues A1316 and S1317 (Extended Data Fig. 4). This 
assignment is in line with the predicted continuous long helix imme-
diately following TM28 (Supplementary Fig. 1) and supported by the 
mass spectrometry for cross-linked peptides (CXMS) results (Extended 
Data Fig. 7). The THU7–THU8 loop is the largest intracellular loop 
of Piezo1, containing approximately 390 residues. According to the 
structure, this loop starts at the distal end of the beam, extends 90 Å 
into the centre of the complex to interact with the CTD, and then folds 
back to the distal end of the beam before connecting to TM29 (Fig. 2). 
The organization of this loop might render the beam an ideal struc-
ture for mechanical transmission from the distal THUs to the central 
ion-conducting pore.

The beam–CTD–anchor–IH/OH relaying interfaces
CTDα1–3, consisting of the three α​-helices α​1, α​2 and α​3, forms a trian-
gular plane parallel to the plasma membrane, positioned immediately 
above the proximal end of the beam (Figs 2a and 3a). The beam-facing 
side of the triangular CTD plane is clearly separated into two surfaces 
with negative and positive electrostatic potentials (Fig. 3d). The beam 
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Figure 1 | Overall structure of mouse Piezo1. a, The indicated view  
of the sharpened map (6σ contour level) filtered to a resolution of 3.97 Å, 
with each subunit colour-coded and the major domains labelled.  
b, Cartoon models with each subunit colour-coded. In the middle panel, 
the peripheral blade of the front subunit is omitted for a better view of 
the curvature of the TM helices. The shadow area indicates a planar and a 
potentially curved membrane plane where TM helices reside.
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Figure 2 | Repetitive THUs and a 38-TM topology model. a, Cartoon 
model showing cylindrical helices displays one subunit, with individual 
THUs and major structural domains labelled. The functionally 
characterized extracellular loops of TM15–TM16 (L15–16) and  
TM19–TM20 (L19–20) are shown in red dashed lines, and residues  
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crosses through the boundary of the two surfaces, forming interactions 
with both CTDα1 and CTDα2. The disease-associated residue R1353 
might form a salt bridge with E2518 (Fig. 3d, e).

The anchor domain, uniquely positioned between the OH–IH 
pair and the CTD plane, results in a swap of the OH–CED–IH into 
the neighbouring subunit (Figs 1 and 3a). Anchorα1–2 forms an 
inverted v-shaped structure that penetrates into the inner leaflet of 
the membrane, containing the evolutionarily conserved motif among 
Piezo homologues, P2129-F2130(X2)-E2133(X6)-W214021. P2129, 
F2130 and E2133 are in close proximity to the intracellular end of 
the pore-lining IH (Fig. 3a, b), which may stabilize the integrity of  
the ion-conducting pore. Indeed, although E2133 is not located in the 
ion-conducting pathway, its mutations affect the pore properties20. 
Anchorα2 lies parallel to the inner portion of the OH, which is kinked 
at residue I2203, forming hydrophobic interactions (Fig. 3a, b). The 
upper portion of the OH above the kink lies parallel to the IH and also 
forms extensive hydrophobic interactions (Fig. 3a, b). Thus, the OH 
might help to stabilize the IH-encompassing pore.

The long anchorα3, in parallel with the membrane plane, 
forms a hydrophobic interface with the CTD (Fig. 3a, c). It 
connects to the OH through the lysine-rich anchor–OH–linker 
(2173-KKYPQPKGQKKKK-2185), which forms a tripartite interaction 
with the polar residue-rich anchorα2–3 turn (2143-TDTTLS-2148), and 
the glutamate-rich region of the CTD (2514-RETRELELEEE-2524) 
(Fig. 3a, e). Several residues, including T2143, 2182-KKKK-2185, 

R2514, E2522 and E2523, are associated with disease. Furthermore, 
we have found that the anchor–OH–linker is important not only for 
mechanogating but also for mediating the interaction with the sarco/
endoplasmic reticulum Ca2+ ATPase (SERCA) and the resulting inhi-
bition of Piezo122.

The ion-conducting pathway
The OH–CED–IH–CTD structure trimerizes to form the well-resolved 
central pore module3,4. Subjecting the structure of the pore module 
to the online PPM server23 revealed that the entire IH spanning from 
Y2464 to F2485 defines the transmembrane region of approximately 
29 Å thick (Fig. 4a, b). The central solvent-accessible pathway can 
be separated into the extracellular vestibule above the membrane, 
the membrane vestibule within the membrane and the intracellular 
vestibule immediately below the membrane (Fig. 4a, c). The IH lacks  
negatively charged residues and encloses a hydrophobic transmem-
brane pore with pore-facing residues shown in Fig. 4a, b, e. V2476 
forms a constriction point in the middle of the membrane vestibule 
(Fig. 4a–c). Notably, the transmembrane pore is not completely sealed 
from the membrane by the three IHs (Fig. 4d, e). Two neighbouring 
IHs and one OH form a hydrophobic groove open to the transmem-
brane pore (Fig. 4d, e). This feature raises an intriguing possibility that 
membrane lipids may affect the ion permeation and gating of Piezo1.
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Although the top of the extracellular vestibule is sealed and the  
bottom end of the intracellular vestibule is constricted (Fig. 4a, c), both 
vestibules have large fenestration sites immediately above and below 
the membrane, respectively (Fig. 4d). The patch of negatively charged 
residues 2393-DEEED-2397, located right above the extracellular 
fenestration sites (Fig. 4d), has a crucial role in controlling efficient ion 
conduction and the selection of cations over anions3,4. These features 
suggest that cations might enter the ion-conducting pathway through 
the extracellular fenestration sites. The intracellular fenestration sites 
have a size of roughly 10 ×​ 15 Å, through which the intracellular  
vestibule connects to three ~​8-Å-wide side portals with negative elec-
trostatic potentials, comprising E2487 from one subunit and E2495 and 
E2496 from a neighbouring subunit (Fig. 4d, f). Mutating these resi-
dues affects the unitary conductance, Ca2+ permeability and ruthenium 
red responsiveness of mouse Piezo14. Given that E2495 and E2496 are 
not located along the central pore axis but rather on the side portals  
(Fig. 4d, f), we propose that the three intracellular fenestration sites 
and the connecting side portals might represent the intracellular  
cation permeation pathways. Nevertheless, it remains to be determined 
whether the top seal of the extracellular vestibule and the bottom con-
striction site of the intracellular vestibule might be gated to allow ion 
conduction. Previous studies have indicated that the diameter of the 
ion-conducting pathway upon opening is larger than 8 Å24. Thus, the 
observed constriction sites in the transmembrane pore indicate that the 
structure represents a closed conformation (Fig. 4a, c).

Motion features of Piezo1
Comparing the nine distinct structures derived from symmetry-free 
classification revealed conformational changes at the peripheral blades, 
the beam and the cap (Extended Data Fig. 8). Notably, as shown in Fig. 5a,  
each subunit within the trimeric complex might be able to move inde-
pendently. This independent motion of the individual subunit might 
be functionally relevant, as a given force in the membrane is unlikely to 
be evenly distributed among the three subunits unless the force directly 
acts on the central cap region. We further compared two structures of 
4.51 Å and 4.40 Å resolution, resulting from class 3 and class 6 of the 9 
classified structures with C3 symmetry, respectively (Extended Data 
Fig. 2). Superimposition of the two maps shows that the IHs, anchor 
and CTD were nearly unchanged (Fig. 5c, d). By contrast, the cap of 
class 6 rotates in a clockwise manner relative to that of class 3 (Fig. 5b).  
The TM blades of class 6 undergo an anticlockwise twist, with a graded 
decrease in motion from the distal THU4 to the proximal THU9 (Fig. 5b).  
The intracellular helical layer exhibits a vertical motion (Fig. 5d), which 
might flatten the curved distal blades and the residing membrane. 
Notably, the beam displays uneven movement with large motion at 
the distal beam while subtle movement at the proximal end (Fig. 5d–f). 
As a whole, the motion feature of the peripheral TM helices and the 
beams is reminiscent of a lever apparatus (Fig. 5f). We next carried out 
biochemical and functional studies to test the importance of the distal 
blade and the beam in the mechanical activation of Piezo1.

Extracellular loops are crucial for mechanical activation
We generated a series of deletion mutants in which the extracel-
lular loops of distal THU1–THU6 were deleted (replaced with a 
short poly-glycine GGGGG linker) one at a time (Fig. 2b). Among 
the deletion mutants, only Δ​L15–16 and Δ​L19–20 had compa-
rable expression to that of wild-type mouse Piezo1 (Extended 
Data Fig. 9d and Supplementary Fig. 2b), and were properly tar-
geted to the plasma membrane (Extended Data Fig. 9a–c and 
Supplementary Fig. 2a). Together, these data suggest that the loop 
regions of TM3–TM4, TM7–TM8, TM11–TM12 and TM23–TM24 
are crucial for the proper expression and plasma membrane tar-
geting of Piezo1. Δ​L15–16 and Δ​L19–20, but not other mutants, 
were functional (Fig. 6a, b). However, the poking-induced maxi-
mal whole-cell currents (Imax) of Δ​L15–16 and Δ​L19–20 were only 
4.3 ±​ 1.3% (mean ±​ s.e.m.) and 3.3 ±​ 0.8% of the Piezo1-mediated 

current, respectively (Fig. 6a, b). Similar results were observed in  
Δ​L15–16- or Δ​L19–20-transfected Piezo1-knockout HEK293 cells 
in which the endogenous Piezo1 gene was disrupted25 (Extended Data 
Fig. 9e). Furthermore, the stretching-induced Piezo1-like currents 
were abolished in cells expressing the two mutants (Fig. 6d, e). Yoda1, 
a chemical agonist of Piezo1, can evoke Piezo1-dependent Ca2+ 
responses and potentiate Piezo1-mediated mechanical currents26. 
Compared to Piezo1, the two mutants showed comparable Yoda1-
induced fold changes of the poking-evoked currents (Fig. 6c) and 
Ca2+ responses (Fig. 6f and Extended Data Fig. 9i), suggesting that the 
two mutants retain normal Yoda1 responsiveness. In line with their 
drastically reduced mechanically evoked currents in the absence of 
Yoda1 (Fig. 6a, b), the poking-induced Imax of the two mutants was 
also smaller than that of Piezo1 when Yoda1 was present (Fig. 6a and 
Extended Data Fig. 9f). The inactivation kinetics of the two mutants 
was similar to that of Piezo1 (Extended Data Fig. 9g, h), suggesting that 
deleting the two loops does not affect the inactivation process. Together, 
these data demonstrate that the two extracellular loops have a crucial 
role in the mechanical activation of Piezo1.

L1342 and L1345 are required for mechanical activation
Deleting the residues from 1280 to 1360 that contain the beam structure 
abolished the expression of the resulting mutant protein (Extended 
Data Fig. 9d), in line with the structural importance of the beam. 
Interestingly, the beam domain contains a predicted coiled-coil motif, 
1342-LAQLKRQM-1349, which is located in the proximal end of the 
beam near the CTD and seems to be stable (Fig. 5f). The L1342A/
L1345A double mutant was properly expressed in the plasma mem-
brane (Extended Data Fig. 10a, b). However, the mutant exhibited 
reduced poking-induced currents (Fig. 6g, h). Its Imax reached only 
approximately 21% of the Piezo1-mediated current (Fig. 6h). L1342A/
L1345A also exhibited reduced stretching-induced current (47% of 
the Piezo1 current) (Fig. 6i), a rightward shifted pressure–current 
relationship (Fig. 6j), and enhanced the pressure required to activate 
half of the channel (P50) (Piezo1 versus L1342A/L1345A: −​27.1 ±​ 3.1 
versus −​46.2 ±​ 6.4 mm Hg) (Fig. 6k). The single-channel conductance 
(Extended Data Fig. 10c–e) of the mutant was not affected. Furthermore, 
neither mutating the residue Q1344 (Extended Data Fig. 10f)  
nor mutating residues in close proximity to L1342 and L1345, including 
T2103 and R2104 in the TM36 anchor–linker and L2512 and T2516 
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constituted by the beam.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



Article RESEARCH

2 2  f e b r u a r y  2 0 1 8  |  V O L  5 5 4  |  N A T URE    |  4 9 1

in the CTD (Extended Data Fig. 10g, h), affected the poking-induced 
currents. Collectively, these data suggest that L1342 and L1345 are  
specifically required for the mechanogating of Piezo1.

The Δ​L15–16 and Δ​L19–20 mutants completely lost their ability 
to generate stretch-induced currents (Fig. 6d, e), but could produce 
residual poking-currents (Fig. 6a, b). The L1342A/L1345A mutant 
has more markedly reduced poking-induced currents than stretching-
induced currents (Fig. 6h, i). These observations suggest that different 
forms of mechanical stimulation may use discrete molecular bases of 
Piezo1 for mechanotransduction.

Discussion
Piezo channels serve as a principal type of mechanotransduction 
channels. Here, via determining the mouse Piezo1 structures, we have 
revealed its unique topological features, the ion-conducting pathway, 
and the lever-like motion of the blade-beam. Functionally, we have 
identified regions and single residues that are crucial for the mechanical 
activation of Piezo1. We propose that Piezo1 might use its characteristi-
cally curved blades and the long beams with L1342 and L1345 as a pivot 
to form a lever-like apparatus. Such a lever-like mechanotransduction 
mechanism might enable Piezo channels to effectively convert a large 

conformational change of the distal blades to a relatively slight opening 
of the central pore, allowing cation-selective permeation. Three sets of 
such lever-like apparatus are further assembled into a gigantic propeller- 
like machinery, which might confer a coordinated mechanosensitivity. 
Thus, different classes of mechanosensitive ion channels, such as the 
bacterial mechanosensitive channels with large conductance (MscL), 
the mechanosensitive K2P channels and the NOMPC mechanotrans-
duction channels, use distinct structural and functional mechanisms 
for mechanotransduction27–29.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
No statistical methods were used to predetermine sample size. The experiments 
were not randomized and investigators were not blinded to allocation during 
experiments and outcome assessment.
Molecular cloning. All constructs were subcloned by using the One Step Cloning 
Kit (Vazyme Biotech) according to the instruction manual and as described  
previously3, then sequenced to validate the desired mutations. The loop deletion 
mutants include Δ​L3–4 (84–122), Δ​L7–8 (275–317), Δ​L11–12 (492–521),  
Δ​L15–16 (657-677), Δ​L19–20 (870–921), and Δ​L23–24 (1060–1150).
Protein expression and purification. The purification of the mouse Piezo1 protein 
was performed essentially as in our previously described protocols except for the 
following two modifications3. First, the time for purification was shortened to 
within two days. Second, the collection volume of each peak fraction was reduced 
to obtain more homogeneous fractions. The fresh protein, not subjected to a  
concentration step, was then directly used for cryo-sample preparation.
Sample preparation and cryo-electron microscopy data acquisition. Aliquots 
(4 μ​l) of detergent-solubilized mouse Piezo1 at a concentration of approximately 
0.18 mg ml−1 were applied to glow-discharged 300-mesh Quantifoil R2/2 grids 
(Quantifoil, Micro Tools GmbH) coated with a homemade continuous thin carbon 
layer. After a 15-s waiting time, the grids were blotted for 3.5 s and plunged into 
liquid ethane using an FEI Mark IV Vitrobot operated at 8 °C and 100% humidity. 
The grids were transferred to a Titan Krios (FEI) electron microscope operating 
at a voltage of 300 kV with a K2 Summit direct electron detector (Gatan) in the 
super-resolution counting mode. Data acquisition was performed using UCSF-
Image430 with a nominal magnification of ×​22,500, which yields a super-resolution 
pixel size of 0.66 Å on image plane, and with defocus ranging from −​1.5 μ​m to 
−​3.0 μ​m. The dose rate on the detector was approximately 8.2 counts per pixel 
per second with a frame exposure time of 0.25 s and a total exposure time of 8 s. 
Each micrograph stack contains 32 frames. The total dose rate was approximately 
50 e− Å−2 for each micrograph.
Image processing. A simplified diagram of the procedure for image processing 
is presented in Extended Data Fig. 2. A total of 5,840 and 4,331 cryo-EM micro-
graphs from two datasets were manually collected for the mouse Piezo1 proteins. 
The motion correction was performed using MotionCor131 with 2 ×​ 2 binning, 
resulting in a pixel size of 1.32 Å. The output stacks from MotionCor1 were  
further motion corrected with MotionCor232, and meanwhile, dose weighting was 
performed, yielding motion-corrected integrated images for further processing. 
The whole image defocus parameters were estimated by CTFFIND333. A total 
of 1,417,116 and 1,405,683 particles were respectively autopicked from the two 
batches of the datasets by RELION 1.434. Several rounds of two-dimensional (2D) 
classification were then performed. Those particles in the classes with fuzzy class 
averages were considered as bad particles and excluded from further analysis. 
Finally, 377,175 and 203,621 particles from the two batches were selected for  
further three-dimensional (3D) analysis, respectively. A cylinder model generated 
by SPIDER35 was used as the initial model for the first round of 3D refinement. 
Then, each particle was recentred using the in-plane translations measured in 3D 
refinement and re-extracted from the motion-corrected integrated micrographs. 
Gctf36 was used to refine the local defocus parameters. The well-centred particles 
with more accurate defocus parameters were subjected to further 3D refinement, 
which resulted in two electron density maps at 4.25 Å and 4.86 Å resolution, 
respectively. The particles from the two datasets were pooled together to expand 
the data volume. A total of 465,503 particles with clear secondary-structure features 
in the corresponding class averages were selected after further 2D classification, 
and subjected to 3D refinement, resulting in a map at 4.15 Å resolution. To further 
eliminate heterogeneous particles, we used a random-phase 3D classification 
method37, and the remained 238,529 good particles were subjected to a final 3D 
refinement. Eventually, the resolution was improved to 3.97 Å.

The particles selected from the random-phase 3D classification were also 
subjected to 3D classification with C3 symmetry using refined orientations based 
on the 3.97 Å map, while no image alignment was performed in the 3D classifica-
tion to limit the uncertainty of the angular search. The particles of the two classes 
with the largest variations were chosen and subjected to one additional round of 
3D auto-refinement, which resulted in two reconstructions with overall resolutions 
of 4.51 Å and 4.40 Å. To examine whether the three subunits within the trimeric 
channel might move independently, the 4.15 Å reconstruction was subjected to an 
additional round of 3D classification without symmetry.

To improve the density of the far end of the blade region, another two replicas 
of particles with −​120°/120° rotation on the pseudo-C3 axis were added to the 
original particles, and then projections of the cap and the other two blades were 
subtracted from the tripled experimental particle images. The remaining particles 
were processed following a focused classification procedure38, which resulted in 
a blade map at 4.86 Å resolution showing better resolved TM helices. To improve 
the density of the linker between the termini of the CED and the OH and IH 

projections of the peripheral regions of the blades were subtracted from the experi
mental images, and the remaining particles were processed following a focused 
classification procedure, which resulted in a pore map at 4.25 Å resolution.

The reported resolutions are based on the gold-standard Fourier shell corre-
lation (FSC) 0.143 criterion39. All density maps were sharpened by applying a 
negative B-factor that was estimated using automated procedures40. Local resolu-
tion variations were estimated using Blocres41.
Model building and structure refinement. The TM regions of mouse Piezo1 in 
the sequence were predicted by HMMTOP42. The crystal structure of CED (PDB 
accession 4RAX3) was docked into the cryo-EM map in Chimera43. The remaining 
part of the model was built de novo in COOT44. The cryo-EM map showed clear 
side chain features in the C-terminal region, which allowed us to build the atomic 
model including side chains from residues 972 to the C-terminal 2547, with the 
remaining TM helices as poly-alanines. The topology of the whole structure was 
refined using MDFF45 and phenix.real_space_refine46 with NCS restraints.
Piezo1 cross-linking and LC–MS/MS analysis. The purified Piezo1 proteins 
were cross-linked at room temperature with DSS (disuccinimidyl suberate), BS3 
(bis[sulfosuccinimidyl] suberate), and sulfo-GMBS (N-[g-maleimidobutyryloxy]
sulfosuccinimide ester), the spacer arm lengths of which are 7.3 Å, 11.4 Å and 
11.4 Å, respectively. The samples were then digested and subjected to liquid 
chromatography–tandem mass spectrometry (LC–MS/MS) analysis. The cross-
linked peptides were identified using the pLink software as previously described47.
Immunostaining. Live-cell labelling was carried out following the procedure 
reported previously4.
Whole-cell electrophysiology and mechanical stimulation. The protocols for 
HEK293T cell culture, transient transfection and patch-clamp experiments with 
an Axopatch 200B amplifier (Axon Instruments) or HEKA EPC10 were essentially 
similar to those previously described4. For whole-cell patch-clamp recordings, 
the recording electrodes had a resistance of 2–3 MΩ when filled with an internal 
solution composed of (in mM) 133 CsCl, 1 CaCl2, 1 MgCl2, 5 EGTA, 10 HEPES 
(pH 7.3 with CsOH), 4 MgATP and 0.4 Na2GTP. The extracellular solution was 
composed of (in mM) 133 NaCl, 3 KCl, 2.5 CaCl2, 1 MgCl2, 10 HEPES (pH 7.3 with 
NaOH) and 10 glucose. All experiments were carried out at room temperature. The 
currents were sampled at 20 kHz, filtered at 2 kHz using the Clampex 10.4 software 
(Axon Instruments) or Patchmaster software. Leak currents before mechanical 
stimulation were subtracted off-line from the current traces.

Mechanical stimulation was delivered to the cell during the patch-clamp 
recording at an angle of 80° using a fire-polished glass pipette (tip diameter 3–4 μ​m)  
as previously described1,2. The downward movement of the probe towards the 
cell was driven by a Clampex controlled Piezo-electric crystal micro-stage (E625 
LVPZT Controller/Amplifier; Physik Instrument). The probe had a velocity of  
1 μ​m ms−1 during the downward and upward motion, and the stimulus was main-
tained for 150 ms. A series of mechanical steps in 1-μ​m increments was applied 
every 20 s, and the currents were recorded at a holding potential of −​70 mV. Yoda1 
was solubilized in DMSO as a stock solution of 30 mM and diluted to a final con-
centration of 30 μ​M using the extracellular solution. The poking-induced currents 
were recorded within 10 min using the extracellular solution with or without 30 μ​
M Yoda1.
Cell-attached electrophysiology. Stretching-activated currents were recorded 
in the cell-attached patch-clamp configuration as previously described4. The 
currents were sampled at 20 kHz and filtered at 2 kHz. The pipettes were filled 
with a solution consisting of (in mM) 130 NaCl, 5 KCl, 10 HEPES, 1 CaCl2, 1 MgCl2 
and 10 TEA-Cl (pH 7.3, balanced with NaOH). The external solution used to zero 
the membrane potential consisted of (in mM) 140 KCl, 10 HEPES, 1 MgCl2 and  
10 glucose (pH 7.3 with KOH). All experiments were performed at room 
temperature. The membrane patches were stimulated with negative pressure 
pulses for 500 ms through the recording electrode using a Patchmaster controlled 
pressure clamp HSPC-1 device (ALA-scientific). Stretching-activated channels 
were recorded at a holding potential of −​80 mV with pressure steps from  
0 to −​100 mm Hg (−​10 mm Hg increments), and 4–11 recording traces were 
averaged per cell for analysis. The current–pressure relationships were fitted with 
a Boltzmann equation of the form I(P) =​ [1 +​ exp(−​(P −​ P50)/s)]−1, in which I 
is the peak of the stretching-activated current at a given pressure, P is the applied 
patch pressure (in mm Hg), P50 is the pressure value that evoked a current value of 
50% of Imax, and s reflects the current sensitivity to pressure.
FLIPR. Human embryonic kidney 293T (HEK293T) cells were grown in 
DMEM containing 4.5 mg ml−1 glucose, 10% fetal bovine serum, 1% penicillin/
streptomycin. Cells were seeded in 50 μ​g ml−1 poly-d-lysine-coated 96-well plates  
(3 ×​ 104 cells per well) and allowed to grow for approximately 18 h, then co-
transfected with a total of 250 ng of cDNA containing Piezo1 or the mutants 
and the genetically encoded Ca2+ indicator, GCAMP6s, using Lipofectamine 
2000 (Invitrogen, Life Technology). Two days after transfection, the cells were 
washed with buffer containing HBSS (1.3 mM Ca2+) and 10 mM HEPES (pH 7.2).  
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The 96-well cell plate with 50 μ​l of buffer in each well was then transferred to the 
FLIPR Tetra (Molecular Device) for recording the GCAMP6s fluorescent signal 
at a time interval of 1 s using an excitation wavelength of 470–490 nm and an 
emission wavelength of 515–575 nm. The baseline GCAMP6s fluorescent signal 
without Yoda1 addition was monitored for 15 s, and then the response to Yoda1 was 
recorded for 200 s after transferring 50 μ​l Yoda1 at twice the final concentrations 
from a separate compound plate into the cell plate. The Yoda1-induced fluorescent 
signal change was calculated by subtracting the baseline fluorescent signal from the 
peak fluorescent signal. For each dose point of Yoda1, the data were averaged from 
four repetitive wells. The representative traces of the fluorescence signal change of 
the GCAMP6s in response to 30 μ​M Yoda1 are shown in Extended Data Fig. 9i.
Data availability. The structural coordinates of mouse Piezo1 have been deposited 
in the Protein Data Bank (PDB) under the accession code 5Z10. The cryo-EM map 
has been deposited into the Electron Microscopy Data Bank (EMDB) under the 
accession code EMD-6865. All other data can be obtained from the corresponding 
authors upon reasonable request.
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Extended Data Figure 1 | Purification and cryo-EM analysis of Piezo1. 
a, A representative trace of gel filtration of the full-length mouse Piezo1. 
UV, ultraviolet. The experiment was independently repeated more 
than three times with similar results. b, A representative cryo-electron 
micrograph of Piezo1. The experiment was independently repeated more 
than three times with similar results. c, Power spectrum of the micrograph 
in b, with the 2.74 Å frequency indicated. d, Representative 2D class 
averages of Piezo1 particles. e, Euler angle distribution of particles used 
in the final 3D reconstruction, the height of the cylinder is proportional 

to the number of particles for that view. f, Gold-standard Fourier shell 
correlation (FSC) curves of the final density map. The FSC curves were 
calculated with (purple) or without (red) the application of a soft mask 
to the two half-set maps. The final FSC curve (blue) was corrected for 
the soft-mask-induced effect. Reported resolutions were based on the 
FSC =​ 0.143 criteria. g, The final 3D density map of Piezo1 shown in the 
indicated views is coloured according to the local resolutions estimated by 
the software Blocres.
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Extended Data Figure 2 | Flowchart of EM data processing. Details of data processing are described in the ‘Image processing’ section of the Methods.
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Extended Data Figure 3 | Subtraction of the projection. a, Subtraction 
of the projection of the cap and the other two blades. A distinguishable 
map of THU4, comprising TM13–TM16, is shown in the red dashed 
box. Intracellular helical layer, containing several α​-helices respectively 

connecting to TM29, TM25, TM21, TM17 and TM13, is highlighted in 
the black dashed box. b, Subtraction of the projection of the three blades 
projection. Identifiable linkers between OH and CED as well as IH and 
CED are shown in the red dashed box.
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Extended Data Figure 4 | View of the indicated structural domains illustrates the quality of the cryo-EM density of Piezo1. The helices are shown in 
cartoon representation with side chains as sticks. The cryo-EM density is shown as grey mesh.
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Extended Data Figure 5 | Membrane topology of mouse Piezo1. On the 
basis of various membrane topology prediction algorithms, the N-terminal 
region contains unanimously predicted THUs (highlighted in the purple 
boxes) that show typical features of the structurally revealed THU7–

THU9. On the basis of the resolved 3D structure and the predicted THUs, 
we propose that mouse Piezo1 possesses a 38-TM topology comprising 
9 tandem THUs and the OH and IH (top panel). Diagrams were drawn 
using the TOPO2 program.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



ArticleRESEARCH

Extended Data Figure 6 | The TM27–TM28 loop containing the 
S1240 and D1260 residues is located at the extracellular side. 
Immunofluorescent staining images of cells transfected with the indicated 
constructs using the anti-Flag antibody either in live-labelling (top) or 

after fixation and permeabilization (bottom). Scale bars, 10 μ​m. GFP, green 
fluorescent protein; IRES, internal ribozyme entry site. The experiments 
were repeated in two coverslips with similar results.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



Article RESEARCH

Extended Data Figure 7 | Chemically cross-linked lysine–lysine and 
lysine–cysteine pairs identified in mouse Piezo1. a, b, Purified mouse 
Piezo1 proteins were cross-linked with BS3/DSS (a) or sulfo-GMBS (b), 
and then digested with trypsin. Following LC–MS/MS analysis of the 

peptides, cross-linked lysine pairs were identified using pLink. c, The 
diagram shows the cross-linked lysine pairs between residues located 
in the beam and other regions. The atom-to-atom distance of the cross-
linked residues is shown.
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Extended Data Figure 8 | Conformational heterogeneity of Piezo1. 
Nine classes of Piezo1 structures resulting from symmetry-free 3D 
classification. Conformational heterogeneity is shown by comparing 

different classes with the low-passed 6 Å map of the 3.97 Å map with C3 
symmetry. Red arrows represent the relative movements of the blades and 
beams.
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Extended Data Figure 9 | See next page for caption.
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Extended Data Figure 9 | Characterization of the Piezo1 deletion 
mutants. a, b, Immunofluorescent staining images of cells transfected 
with the indicated constructs using the anti-Flag antibody either in live-
labelling (top) or after fixation and permeabilization (bottom). Scale bars, 
10 μ​m. The experiments were repeated in two coverslips with similar 
results. c, Cell surface biotinylation assay showing comparable plasma 
membrane expression of the indicated constructs. The experiment 
was independently repeated for two times with similar results. d, The 
glutathione S-transferase (GST)-tagged proteins were pulled-down 
by glutathione beads, followed with western blotting using the anti-
GST antibody. The experiment was independently repeated twice with 
similar results. e, Scatter plot of the maximal poking-induced currents of 
Piezo1-knockout HEK293 cells transfected with the indicated mutants, 
which were normalized to the mouse Piezo1 current. f, Scatter plot of the 

maximal poking-induced currents of HEK293T cells transfected with 
the indicated constructs in the presence of 30 μ​M Yoda1. *​*​*​P <​ 0.0001, 
one-way ANOVA with Dunn’s multiple comparison test. g, h, Scatter plot 
of the inactivation tau of HEK293T cells transfected with the indicated 
constructs in the absence (g) or presence (h) of 30 μ​M Yoda1. In g, 
P =​ 0.2267 and 0.4177 (for Δ​L15–16 and Δ​L19–20, respectively) and in h, 
P =​ 0.6263 and 0.6934 (for Δ​L15–16 and Δ​L19–20, respectively); one-way 
ANOVA with Dunn’s multiple comparison test (compared with Piezo1).  
i, Representative traces of the fluorescence signal change of the genetically 
encoded Ca2+ indicator, GCAMP6s, from HEK293T cells co-transfected 
with the indicated constructs and GCAMP6s, in response to 30 μ​M Yoda1. 
The experiment was independently repeated three times with similar 
results. Data in e–h are mean ±​ s.e.m., and the numbers of recorded cells 
are indicated above the bars.
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Extended Data Figure 10 | Characterization of the L1342A/
L1345A mutant. a, Immunofluorescent staining images with the 
anti-Flag antibody either in live-labelling (top) or after fixation and 
permeabilization (bottom). The experiment was independently repeated 
three times with similar results. b, Cell-surface biotinylation assay showing 
comparable plasma membrane expression of the indicated constructs.  
The experiment was independently repeated twice with similar results.  
c, Representative single-channel current traces of the indicated constructs 
recorded at −​140 mV. d, Linear regression fit of average I–V relationships 
of single-channel recordings of the indicated constructs. The number 
of recorded cells for Piezo1 and the L1342A/L1345A mutant is 5 and 7, 

respectively. e, Scatter plot of the unitary conductance calculated from fit 
of individual recordings. P =​ 0.2541, unpaired, two tailed Student’s t-test. 
f, Scatter plot of the Imax of poking-induced currents. P =​ 0.8076, unpaired, 
two tailed Student’s t-test. g, Structural representation of the L1342 and 
L1345 residues and those residues in close proximity. h, Scatter plot of 
the Imax of poking-induced currents of cells transfected with the indicated 
mutants. P =​ 0.9976, 0.9281, 0.3804 and 0.9997 for T2103A, R2104A, 
L2512A and T2516A, respectively; one-way ANOVA with Dunn’s multiple 
comparison test. Data in d–f and h are mean ±​ s.e.m., and the numbers of 
recorded cells in e and h are indicated above the bars.
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study. 
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Author Correction: Structure and 
mechanogating mechanism of the 
Piezo1 channel
Qiancheng Zhao, Heng Zhou, Shaopeng Chi, Yanfeng Wang, 
Jianhua Wang, Jie Geng, Kun Wu, Wenhao Liu, Tingxin Zhang, 
Meng-Qiu Dong, Jiawei Wang, Xueming Li & Bailong Xiao

Correction to: Nature https://doi.org/10.1038/nature25743, 
published online 22 January 2018.

In Extended Data Fig. 9a of this Article, the bottom photomicrographs 
(labelled ‘permeabilized’) of mPiezo1-ΔL3-4-IRES-GFP and mPie-
zo1-ΔL7-8-IRES-GFP were inadvertently duplicated, after the wrong 
photomicrographs were inserted for mPiezo1-ΔL7-8-IRES-GFP. The 
correct figure panels are shown below as Fig. 1, and the original Article 
has not been corrected. We thank the reader who pointed out this error.

CORRECTIONS & AMENDMENTS
Original Extended Data Fig. 9a

Corrected Extended Data Fig. 9a

Fig. 1 | This figure shows the original and the corrected panels from 
Extended Data Fig. 9a of the original Article.

N A T U R E | www.nature.com/nature
© 2018 Springer Nature Limited. All rights reserved.

https://doi.org/10.1038/s41586-018-0513-4
mailto: 
mailto: 
https://doi.org/10.1038/nature25743

	Structure and mechanogating mechanism of the Piezo1 channel

	Authors
	Abstract
	Structure determination of mouse Piezo1

	The unusually curved peripheral TM blade

	The THU repeats and a 38-TM topology model

	The intracellular beam

	The beam–CTD–anchor–IH/OH relaying interfaces

	The ion-conducting pathway

	Motion features of Piezo1

	Extracellular loops are crucial for mechanical activation

	L1342 and L1345 are required for mechanical activation

	Discussion

	References
	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿ Overall structure of mouse Piezo1.
	﻿Figure 2﻿﻿ Repetitive THUs and a 38-TM topology model.
	﻿Figure 3﻿﻿ Beam–CTD–anchor–OH/IH interfaces.
	﻿Figure 4﻿﻿ The ion-conducting pathway.
	﻿Figure 5﻿﻿ Motion features.
	﻿Figure 6﻿﻿ Regions and residues critical for the mechanical activation of Piezo1.
	﻿Extended Data Figure 1﻿﻿ Purification and cryo-EM analysis of Piezo1.
	﻿Extended Data Figure 2﻿﻿ Flowchart of EM data processing.
	﻿Extended Data Figure 3﻿﻿ Subtraction of the projection.
	﻿Extended Data Figure 4﻿﻿ View of the indicated structural domains illustrates the quality of the cryo-EM density of Piezo1.
	﻿Extended Data Figure 5﻿﻿ Membrane topology of mouse Piezo1.
	﻿Extended Data Figure 6﻿﻿ The TM27–TM28 loop containing the S1240 and D1260 residues is located at the extracellular side.
	﻿Extended Data Figure 7﻿﻿ Chemically cross-linked lysine–lysine and lysine–cysteine pairs identified in mouse Piezo1.
	﻿Extended Data Figure 8﻿﻿ Conformational heterogeneity of Piezo1.
	﻿Extended Data Figure 9﻿﻿ Characterization of the Piezo1 deletion mutants.
	﻿Extended Data Figure 10﻿﻿ Characterization of the L1342A/L1345A mutant.

	41586_2018_513_OnlinePDF_300.pdf
	Author Correction: Structure and mechanogating mechanism of the Piezo1 channel

	﻿Fig. 1 This figure shows the original and the corrected panels from Extended Data Fig.





