Esercitazioni BFCM Analisi dei dati

ATP-induced Ca²⁺ signals in endothelial cells

Cellular and Molecular Biophysics 2024/25

Esperimenti di imaging del Ca²⁺ citosolico

Cellule caricate con FURA2-AM (2 µM)

Protocollo 1: Segnali di Ca²⁺ indotti da ATP

- 1. Soluzione fisiologica tyrode standard (circa 30 frames, f; 1f = 3sec)
- 2. Applicazione agonista (ATP 100 μ M) in tyrode standard (circa 100 frames)
- 3. Lavaggio in Soluzione tyrode standard
- 4. Applicazione ionomicina (Iono 5 µM) come controllo positivo dell'esperimento

2

1

Protocollo 2: Contributo degli store ai segnali indotti da ATP e SOCE

- 1. Soluzione fisiologica tyrode standard (circa 30 frames, f; 1f = 3sec)
- 2. Soluzione fisiologica <u>OCa²⁺ 0.5 mM EGTA</u> (circa 10f)
- Soluzione fisiologica <u>0Ca²⁺ 0.5 mM EGTA + ATP 100 μM</u> (circa 100f o meno finché la risposta non si esaurisce)
- 4. Soluzione fisiologica tyrode standard (circa 100f)

Protocol 1

Protocol 2

Analisi dei dati: cytosolic Ca²⁺ signals

• Calculate the % of cellular responses

2. Calculate the peak amplitudes of all signals obtained during Ca²⁺ imaging experiments

- 1. Aprire il file Excel da analizzare
- 2. Copiare il foglio Sheet9 con i valori e rinominarlo come 'originale'

	4 (Region 1, [Location, 1403, 3), Size, (02, 00), Alea, 2000)
	5 Region 2: [Location: (179, 62), Size; (94, 81), Area: 5055]
 File: DDELlog(Excel:[Book1]Sheet911)::C:\AleF\Esercitazioni 24-25\HMEC_14-11-2024] 	6 Begin 3 I ocation (29 74) Size (109 75) Area 53171
2 Date: Thu Nov 14 2024 12:15:6.828	7 Baging 4: [Location: (42, 106) Size (80, 112) Args (757]
3 0 Clock reset to 0.0	P Degine F: [Location: (F22, 103), 5126; [00, 112), Field +101]
4 Region 1: [Location: (453, 9), Size: (62, 60), Area: 2868]	0 Region 5, Education (350, 200), Size, (00, 12), Alea 3142
5 Region 2: [Location: (179, 62), Size: (94, 81), Area: 5055]	9 Region 6: [Location: (252, 306), Size: (60, 76), Area: 4340]
6 Region 3: [Location: (29, 74), Size: (109, 75), Area: 5317]	10 Region 7: [Location: (93, 156), Size: (78, 105), Area: 3434]
7 Region 4: [Location: (422, 105), Size: (80, 112), Area: 4757]	11 Region 8: [Location: (155, 158), Size: (76, 102), Area: 4761]
8 Region 5: [Location: (356, 200), Size: (66, 125), Area: 5142]	12 Region 9: [Location: (90, 252), Size: (81, 95), Area: 4564]
9 Region 6: [Location: (252, 308), Size: (80, 76), Area: 4340]	13 Region 10: [Location: (308, 12), Size: (86, 113), Area: 5625]
10 Region 7: [Location: (93, 156), Size: (78, 105), Area: 3434]	14 Region 11: [Location: (1, 178), Size: (120, 157), Area: 12592]
11 Region 8: [Location: (155, 158), Size: (76, 102), Area: 4761]	15 Region 12: [Location: (255, 384), Size: (76, 75), Area: 4299]
12 Region 9: [Location: (90, 252), Size: (81, 95), Area: 4564]	16 Beginn 13: Il ocation: (210, 426) Size: (123, 89) Area: 73221
13 Region 10: [Location: (308, 12), Size: (86, 113), Area: 5625]	17 Region 14: [Constinu: (Ar. 345) Size (G. 92) Area: (325]
14 Region 11: [Location: (1, 178), Size: (120, 157), Area: 12592]	18 Decimin 15: Location: (HT, 556), 62, 7464, 7665
15 Region 12: [Location: (255, 384), Size: (76, 75), Area: 4299]	10 Region 10. Location: (344, 302, 302 - 116, 14), Alea 3300]
16 Region 13: [Location: (210, 426), Size: (123, 89), Area: 7322]	19 Region to. Location. (530, 530), Size. (62, 116), Afea. 6049]
17 Region 14: [Location: (444, 345), Size: (63, 92), Area: 4325]	20 Region 17: [Location: (554, 32), Size: (54, 221), Area: 7668]
18 Region 15: [Location: (340, 302), Size: (118, 74), Area: 5908]	21 Region 18: [Location: (590, 113), Size: (81, 83), Area: 4453]
19 Region 16: [Location: (598, 398), Size: (82, 118), Area: 6349]	22 Region 19: [Location: (597, 162), Size: (60, 63), Area: 2549]
20 Region 17: [Location: (554, 32), Size: (54, 221), Area: 7668]	23 Region 20: [Location: (338, 52), Size: (60, 91), Area: 3105]
21 Region 18: [Location: (590, 113), Size: (81, 83), Area: 4453]	24 Time (sec) R1 W1 Av; R1 W2 Av; R1 R1 R2 W1 Av; R2 W2 Av; R2 R1 R3 W1 A
22 Region 19: [Location: (597, 162), Size: (60, 63), Area: 2549]	25 0.981 0 0 161,5893 214,9949 0.75034 19,4414
23 Region 20: [Location: (338, 52), Size: (60, 91), Area: 3105]	26 3.981 0 Sentence 2 × 8 19.8480
24 Time (sec) R1 W1 Av(R1 W2 Av(R1 R1 R2 W1 Av(R2 W2 Av(R2 R1 R3 W1 Av	27 6 981 0 Sposta o copia f A 19 8715
25 0,981 0 0 0 161,5893 214,9949 0,75034 19,4414	28 0.081 0 Snorts i fooli relazionati 6 19.4736
26 3,981 0 0 0 161,873 214,8247 0,77358 19,8480.	20 3,001 0 apostariogi setezionaria bi 13,413
27 6,981 0 0 0 161,9565 215,0605 0,779 19,8715	23 12,301 0 <u>Hendratena</u> D 13,300
28 9,981 0 0 161 0259 214 0220 0,76396 19,4735	30 15,361 0 Gruppo A1 Tyr STD ATP.xls 2 19,4039
29 12,981 0 0 Inserisci 0,76865 19,3680	31 16,981 0 Prima del foglio: 8 19,5166
30 15,981 0 0 Elimina 0,75852 19,4039	32 21,981 0 Foolio2 6 19,8540 43
31 18,981 0 0 0 UX LINING 0,77368 19,51664	33 24,981 0 Sheet9 4 19,7876 AA
32 21,981 0 0 I Rinomina 0,7876 19,8540	34 27,981 0 (sposta alla fine) B 19,9080
33 24,981 0 0 0 0,79584 19,7876	35 30,981 0
34 27,981 0 0 Sposta o copia	5 19.8771 Foglio2 Sheet9 (originale)
35 30,981 0 0 Visualizza codice 0,80681 19,880:	37 36,981 0 7 19,4086
36 33,981 0 0 0 0,80175 19,8771	38 39.981 0 ¥ 19.5089 Propto
37 36,981 0 0 Proteggi foglio 0,77937 19,4086!	39 42 981 0 V Crea una copia 9 19 5762
38 39,981 0 0 0 0,79604 19,5089	40 45 981 0 1 19 4980
39 42,981 0 0 <u>Colore linguetta scheda</u> 0,77679 19,5762	41 48 081 0 OK Annulla 8 19 3408
40 45,981 0 0 Nacondi 0,77381 19,4980:	
41 48,981 0 0 0 0,78658 19,3428	
42 51,981 0 0 Scopri 0,79416 19,4519	43 $34,301$ 0 0 0 $103,0977$ 2017,000 0,70000 13,225
43 54,981 0 0 0,78609 19,525	
44 57,981 0 0 Seleziona tutti i fogli 0,79857 19,4895	Foglio2 Sheet9
← → Foglio2 Sheet9 (+)	

- 3. Lavorare sul foglio ORIGINALE
- 4. Eliminare dal foglio 'originale' le righe con le Regions
 - Selezionare le righe come in figura ed eliminarle in modo che nella prima riga compaiano le scritte TIME e le ROI

agin	a Forr	nule	Dati	Re	visior	ne V	'isualizz	a	Guida			
~	10 ~ A	A	' = =	Ξ	87.	at	Testo a	a cap	0		Ger	nerale
	<u></u> ↔	Α -		\equiv	€ :	→ Ξ	Unisci	e alli	nea al centr	o ~	œ	~ %
tere			5			Allinear	nento			5		N
tere			121			Annicar	inenito			1.4		
le: D	DELog(Ex	cel:	Book1]She	ety	1		t)+:C•\∕	leF	Esercitazi	oni 24	-25\ŀ	IMEC
	/	/										
	^		B	C		D	F		-	G		
7	File: DDE	oq(Excel:[Bool	c11Sh	eet91	1)::C:V4	leF\Es	ercit	azioni 24-2	5\HM	C 1	4-11-2
2	Date: Thu	Nov	14 2024 12	:15 3.	828	<i>'</i>					$\overline{\}$	-
3		Clo	ck reset to	05								Y
4	Region 1:	00	ation: (453	9), S	ize: (62, 60),	Area:	2868	8]			
5	Region 2:	[LU	ation: (1),	62), 3	Size:	(94, 81), Area	505	5			
0	Region 4:		at n 1422	105	Size	109,75 a. (80 - 1), Area: 12) ∆⊷	. 531 ea: 4	17571			
8	Region 5:	Loc	atic (356	200)	Size	e: (66, 1	25), An	ea: f	51421			
9	Region 6:	[Loc	a on: 252.	308),	Size	e: (80, 7	6), Area	a: 43	340]			
10	Region 7:	[Lo	ation: (9.	156),	Size:	(78, 10	5), Area	a: 34	134]			
11	Region 8:	[] .0	ation: (155	158),	Size	e: (76, 1	02), Ar	ea: 4	761]			
12	Region C	rial	v 10		Δ Γ	0, v 0,	6 onn 17	56	54]			
13	Region			<u> </u>	A 1	≚⊟ ¥ 7	0 000	= 5	625]			
14	Region	G (- = <mark>∽</mark> -	A		× ,00 ·	<u>→</u> 0 🞸	1	2592]			
16	Region 12	- 10-0	cation: (24)	1 400		. (123	89) A	rea:	73221			
17	Region	Х	Taglia			e. (63.	92), Ar	ea: 4	3251			
18	Region	En.				e: (118	, 74), A	rea:	5908]			
19	Region	L				e: (82,	118), A	rea:	6349]			
20	Region	ĉ	Opzioni Inc	olla:		: (54, 2	21), Ar	ea: 7	7668]		/	
21	Region		r_			e: (81,	83), Ar	ea: 4	453]	/		
22	Region '					e: (60,	03), Ar	ea: 2	(049]			
24	Time (se	-	Incolla spec	iale		R1	R2 W1	Ave	D2 W2 Av	R2 R1		R3 V
25	0,9		-			0	161.5	893	214,9949	0,75	5034	19,4
26	3,9	1	inserisci			0	161,	873	214,8247	0,71	7358	19,8
27	6,9	(Elimina			0	161,9	565	215,0605	0	,779	19,8
28	9,9					0	161,0	358	214,9329	0,76	5396	19,4
29	12,9		Cancella co	ntenut	0	0	161,1	056	213,6965	0,76	0865	19,3
30	15,9		Formato cel	le		0	162.3	141 775	213,3054	0,73	7362	19,4
32	21.9					0	162,3	513	211.2354	0,71	7876	19,5
33	24,9		Altezza righ	e		0	163,1	367	210,9618	0,79	9584	19,7
34	27,9		Nascondi			0	163,4	574	210,6131	0,80	0318	19,9
35	30,9					0	163,0	526	210,2975	0,80	0681	19
36	33,9		Scop <u>r</u> i			0	163,2	809	209,9181	0,80	0175	19,8
37	36,981		0		0	0	162,5	159	209,7031	0,71	/937	19,4
30 30	39,981		0		0	0	162,8	2/5	209,859	0,75	7670	19,5
39 40	42,981		0		0	0	162,0	925	209,596	0,71	7381	19,5
41	48,981		Ő		0	0	162.8	902	208,5385	0.78	8658	19.3
42	51,981		Õ		0	0	163,2	667	207,7381	0,79	9416	19,4
43	54,981		0		0	-	163.0	977	207,764	0,78	3609	19
	67 981		0		0	0	163.1	755	207,3009	0,79	9857	19,4
44	51,501	-	•					1				

Gruppo A1 Tyr STD ATP.xls [modalità compatibilità] - Excel

Fil	le Ho	ome Inser	isci Layo	out di pagina	For	mule Da	ati R
-	🍋 🔏 Tagl	ia	Arial	- 10	- A .	• = =	_ *
	Cop	ia 🔻					
nco •	lia < Cop	ia formato	GCS	r 🖽 + i	🔿 - 🔼	• = =	= •
	Annunt	i G	(arattere		5	
	Appunt			Jarattere		141	
U35	5	- E ×	√ fs	302,29	9693		
	٨	P	0	D	E	E	
1	Time (sec)	R1 W1 Avr B	1 W2 AvcR	1 R1 R2	W1 Ave	R2 W2 Av	R2 R1
	1.196	0	0	0 4	2.31653	91.48182	0.66
3	4,196	0	0	0 4	2,42044	91,86145	0,666
1	7,196	0	0	0 4	2,46845	92,04561	0,636
5	10,196	0	0	0 4	2,52675	91,41804	0,665
5	13,196	0	0	0 4	2,47051	91,07167	0,683
7	16,196	0	0	0 4	2,39232	91,50857	0,62
3	19,196	0	0	0 4	1,96708	91,13477	0,632
)	22,196	0	0	0 4	1,98148	91,28567	0,629
0	25,196	0	0	0	42,2284	91,75137	0,605
1	28,196	0	0	04	1,79698	91,1358	0,626
2	31,196	0	0	0 4	2,21879	91,19925	0,635
3	34,196	0	0	0 4	1,83128	91,24177	0,610
4	37,196	0	0	0 4	1,87551	90,98903	0,630
5	40,196	0	0	0 4	1,79492	90,76749	0,615
0	43,196	0	0	0 4	2,00750	90,64499	0,637
2	40,190	0	0	0 4	1,02002	91,23140	0,6
9	43,130 52,106	0	0	0 4	2,23012	00 08388	0,00
0	55 196	0	0	0 4	1 85665	90 181/1	0,000
1	58 196	0	0	0 4	1 70233	90 68038	0,630
2	61 196	0	0	0	41 9345	90 85974	0 642
3	64,196	0	0	0 4	1.62791	90.04664	0.638
4	67,196	0	0	0 4	1,74246	90,59877	0,610
5	70,196	0	0	0 4	1,67147	90,95405	0,589
6	73,196	0	0	0	41,5048	90,83093	0,616
7	76,196	0	0	0 4	1,37654	90,56584	0,598
8	79,196	0	0	0 4	1,30727	90,69513	0,585
9	82,196	0	0	0 4	1,67661	90,45027	0,608
0	85,196	0	0	0 4	2,34431	89,78807	0,679
1	88,196	0	0	0 4	1,50412	90,28189	0,618
2	91,196	0	0	0 4	2,17798	89,91667	0,672
3	94,196	0	0	0 4	1,25206	90,12449	0,620
4	97,196	0	0	0	41,3546	89,91289	0,621
5	100,196	0	0	0 4	1,52126	89,76818	0,648
0	103,196	0	0	0 4	1,26097	89,99074	0,605
0	106,196	0	U	0 4	1,15089	09,96982	0,612
0	1109,196	0	U	0 4	1,03333	09,03/11	0,672
9	112,196	0	0	0 4	1,24726	09,40331	0,035
1	118 106	0	0	0 4	1 55603	90 12804	0.621
2	121 196	0	0	0 4	41 5703	89 779/10	0,62
2	124 196	0	0	0 4	1 72634	89 93038	0,644
4	127 196	0	0	0 4	1 50377	90 55864	0.622
E.	130 106	0		0 /	1 52503	00 07201	0.61/
	L	E o glio 2	Sha ato	a via in al	E Cor	holl	

- 5. Creare un nuovo foglio di lavoro (Foglio4)
- 6. Sul foglio nuovo nella **casella B1** (prima riga della seconda colonna) applicare la seguente formula:

=INDIRETTO(INDIRIZZO(CELLA("riga";B1);4+3*CELLA("col";A1);4;1;"originale"))

questa formula vi consente di copiare dal foglio «originale» le colonne relative ai rapporti 340/380 eliminando quelle relative alle singole lunghezze d'onda

7. Trascinare la formula in modo da applicarla a tutte le righe di tutte le ROI

INDIRETTO(INDIRIZZO(CELLA("riga";81);4+3*CELLA("col";A1);4;1;"originale" A B D E F G 1 Time (sk: R2 R1 0 E F G 2 0,981 - - - - - 3 3,981 - - - - - - 5 9,981 -	=			1.41		Alline	amento		F <u>u</u>
A B D E F G 1 Time (sec R2 R1 0 E F G 2 0.981 - - - - - 3 3.991 - - - - - - 5 9.981 - - - - - - 6 12.981 - - - - - - 7 15.961 - - - - - - 9 21.981 - - - - - - 11 27.981 -		NDIRET	TO(INDIR	IZZO(CEL	LA("riga	";B1);4+3*(ELLA("col"	;A1);4;1;"o	ginale")
A B D E F G 1 Time (sk R2 R1 0.981									0 /
1 Time (sk) R2 R1 2 0.981 2 0.981			A	В		D	F	F	G
2 0.981		1 Tim	e (sec) R	2 R1					_
a 3.981		2	0,981						
4 6,981 5 9,981 6 12,981 7 15,981 8 18,981 9 21,981 10 24,981 11 27,981 12 30,981 13 33,981 14 36,981 15 39,981 16 42,981 17 45,981 18 48,981 19 51,981 20 54,981 21 57,981 22 60,981 23 63,981 24 66,981 25 69,981 26 72,981 27 75,981 28 78,981 30 84,981 31 87,981 32 90,981 33 39,981 34 96,981 35 99,981 36 102,981 37 105,981 38 108,981 39		3	3,981	1					
5 9,981 6 12,981 7 15,981 8 18,981 9 21,981 10 24,981 11 27,981 12 30,981 13 33,981 14 36,981 15 39,981 16 42,981 17 45,981 18 48,981 19 51,981 20 54,981 21 57,981 22 60,981 23 63,981 24 66,981 25 69,981 26 72,981 27 75,981 28 78,981 30 84,981 31 87,981 32 90,981 33 39,3981 34 96,981 35 99,981 36 102,981 37 105,981 38		4	6,981		V				
6 12,981 7 15,981 8 18,981 9 21,981 10 24,981 11 27,981 12 30,981 13 33,981 14 36,981 15 39,981 16 42,981 17 45,981 18 48,981 19 51,981 20 54,981 21 57,981 22 60,981 23 63,981 24 66,981 25 69,981 26 72,981 27 75,981 28 78,981 30 84,981 31 87,981 32 90,981 33 93,981 34 96,981 35 99,981 36 102,981 37 105,981 38 108,981 39		5	9,981						
7 15,981 8 18,981 9 21,981 10 24,981 11 27,981 12 30,981 13 33,981 14 36,981 15 39,981 16 42,981 17 45,981 18 48,981 20 54,981 21 57,981 22 60,981 23 63,981 24 66,981 25 69,981 26 72,981 27 75,981 28 78,981 29 81,981 30 84,981 31 87,981 32 90,981 33 33,981 34 96,981 35 99,981 36 102,981 37 105,981 38 108,981 39 114,981 40 114,981 42 120,981 <td></td> <td>6</td> <td>12,981</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		6	12,981						
8 18,981 9 21,981 10 24,981 11 27,981 12 30,981 13 33,981 14 36,981 15 39,981 16 42,981 17 45,981 18 48,981 20 54,981 21 57,981 22 60,981 23 63,981 24 66,981 25 69,981 26 72,981 27 75,981 28 78,981 29 81,981 30 84,981 31 87,981 32 90,981 33 39,981 34 96,981 35 99,981 36 102,981 37 105,981 38 108,981 39 114,981 40 114,981 42 120,981		7	15,981						
9 21,981 10 24,981 11 27,981 12 30,981 13 33,981 14 36,981 15 39,981 16 42,981 17 45,981 18 48,961 19 51,981 20 54,981 21 57,981 22 60,981 23 63,981 24 66,981 25 69,981 26 72,981 27 75,981 28 78,981 29 81,981 30 84,981 31 87,981 32 90,981 33 33,9391 34 96,981 35 99,981 36 102,981 37 105,981 38 108,981 39 114,981 40 114,981 41 117,981		8	18,981						
10 24,981 11 27,981 12 30,981 13 33,981 14 36,981 15 39,981 16 42,981 17 45,981 18 48,981 20 54,981 21 57,981 22 60,981 23 63,981 24 66,981 25 69,981 26 72,981 27 75,981 28 78,981 29 91,981 30 84,981 31 87,981 32 90,981 33 93,981 34 96,981 35 99,981 36 102,981 37 105,981 38 108,981 39 111,981 40 114,981 42 120,981		9	21,981						
11 27,981 12 30,981 13 33,981 14 36,981 15 39,981 16 42,981 17 45,981 18 48,981 20 54,981 21 57,981 22 60,981 23 63,981 24 66,981 25 69,981 26 72,981 27 75,981 28 78,981 29 81,981 30 84,981 31 87,981 32 90,981 33 93,981 34 96,981 35 99,981 36 102,981 37 105,981 38 108,981 39 111,981 40 114,981 42 120,981		10	24,981						
12 30,981 13 33,981 14 36,981 15 39,981 16 42,981 17 45,981 18 48,981 20 54,981 21 57,961 22 60,981 23 63,981 24 66,981 25 69,981 26 72,981 27 75,981 28 78,981 29 81,981 30 84,981 31 87,981 32 90,981 33 93,981 34 96,981 35 99,981 36 102,981 37 105,981 38 108,981 39 114,981 40 114,981 41 117,981		11	27,981						
13 33,981 14 36,981 15 39,981 16 42,981 17 45,981 18 48,981 20 54,981 21 57,981 22 60,981 23 63,981 24 66,981 25 69,981 26 72,981 27 75,981 28 78,981 29 81,981 30 84,981 31 87,981 32 90,981 33 93,981 34 96,981 35 99,981 36 102,981 37 105,981 38 108,981 39 111,981 40 114,981 41 117,981		12	30,981						
14 36,981 15 39,981 16 42,981 17 45,981 18 48,981 20 54,981 21 57,981 22 60,981 23 63,981 24 66,981 25 69,981 26 72,981 27 75,981 28 78,981 29 81,981 30 84,981 31 87,981 32 90,981 33 33,981 34 96,981 35 99,981 36 102,981 37 105,981 38 108,981 39 111,981 40 114,981 42 120,981		13	33,981						
15 39,981 16 42,981 17 45,981 18 48,981 19 51,981 20 54,981 21 57,981 22 60,981 23 63,981 24 66,981 25 69,981 26 72,981 27 75,981 28 78,981 29 81,981 30 84,981 31 87,981 32 90,981 33 93,981 34 96,981 35 99,981 36 102,981 37 105,981 38 108,961 39 111,981 40 114,961 41 117,981		14	36,981						
16 42,981 17 45,981 18 48,981 20 54,981 21 57,961 22 60,981 23 63,981 24 66,981 25 69,981 26 72,981 27 75,981 28 7,891 29 81,981 30 84,981 31 87,981 32 90,961 33 93,981 34 96,961 35 99,981 36 102,981 38 108,981 39 111,981 40 114,981 42 120,981		15	39,981						
17 45,981 18 48,981 19 51,981 20 54,981 21 57,981 22 60,981 23 63,981 24 66,981 25 69,961 26 72,981 27 75,961 28 78,981 29 81,981 30 84,981 31 87,981 32 90,981 33 93,981 34 96,981 35 99,981 36 102,981 38 106,961 39 111,981 40 114,981 42 120,981		16	42,981						
18 48,981 19 51,981 20 54,981 21 57,981 22 60,981 23 63,961 24 66,981 25 69,961 26 72,981 27 75,961 28 78,981 29 81,961 30 84,981 31 87,981 32 90,981 33 93,981 34 96,981 35 99,981 36 102,981 37 105,981 38 108,981 39 111,981 40 114,981 42 120,981		17	45,981						
19 51,981 20 54,981 21 57,981 22 60,981 23 63,981 24 66,981 25 69,981 26 72,981 27 75,981 28 78,981 29 81,981 30 84,981 31 87,981 32 90,981 33 93,981 34 96,981 35 99,981 36 102,981 38 108,981 39 111,981 40 114,981 41 117,981		18	48,981						
20 54,981 21 57,961 22 60,981 23 63,981 24 66,981 25 69,981 26 72,961 27 75,981 28 78,961 29 81,981 30 84,961 31 87,981 32 90,961 33 93,981 34 96,961 35 99,981 36 102,961 37 105,981 38 108,981 39 111,981 40 114,981 41 117,981		19	51,981						
21 57,981 22 60,981 23 63,981 24 66,981 25 69,981 26 72,981 27 75,981 28 78,981 29 81,981 30 84,981 31 87,981 32 90,981 33 93,981 34 96,981 35 99,981 36 102,981 37 105,981 38 108,981 41 114,981 42 120,981		20	54,981						
22 60,981 23 63,981 24 66,981 25 69,981 26 72,981 27 75,981 28 78,981 29 81,981 30 84,981 31 87,981 32 90,981 33 93,961 34 96,981 35 99,981 36 102,981 37 105,981 38 108,981 39 111,981 40 114,981 41 117,981		21	57,981						
23 63,981 24 66,981 25 69,981 26 72,981 27 75,981 28 78,981 29 81,981 30 84,981 31 87,981 32 90,981 33 93,981 34 96,981 35 99,981 36 102,981 38 108,981 39 111,981 40 114,981 42 120,981		22	60,981						
24 66,981 25 69,981 26 72,981 27 75,981 28 78,981 29 81,981 30 84,981 31 87,981 32 90,961 33 93,981 34 96,961 35 99,981 36 102,981 38 108,981 39 111,981 40 114,981 41 117,981		23	63,981						
25 69,981 26 72,981 27 75,961 28 78,981 29 81,961 30 84,981 31 87,981 32 90,981 33 93,961 34 96,981 35 99,981 36 102,961 37 105,981 38 108,961 40 114,961 41 117,981 42 120,961		24	66,981						
26 72,981 27 75,981 28 78,981 29 81,981 30 84,981 31 87,981 32 90,981 33 93,961 34 96,981 35 99,961 36 102,981 37 105,981 38 108,981 40 114,981 41 117,981 42 120,981		25	69,981						
27 75,981 28 78,981 29 81,981 30 84,981 31 87,981 32 90,981 33 93,981 34 96,981 35 99,981 36 102,981 38 108,981 39 111,981 40 114,981 41 117,981		26	72,981						
28 78,981 29 81,981 30 84,961 31 87,981 32 90,961 33 93,981 34 96,961 35 99,981 36 102,961 38 108,961 39 111,981 40 114,961 41 117,981		27	75,981						
29 81,981 30 84,981 31 87,981 32 90,981 33 93,981 34 96,981 35 99,981 36 102,981 37 105,981 38 108,981 39 111,981 40 114,981 41 117,981		28	78,981						
30 84,981 31 87,981 32 90,981 33 93,981 34 96,981 35 99,981 36 102,981 37 105,981 38 108,981 39 111,981 40 114,981 41 117,981 42 120,981		29	81,981						
31 67,301 32 90,981 33 93,981 34 96,981 35 99,981 36 102,981 37 105,981 38 108,981 39 111,981 40 114,981 41 117,981 42 120,981		30	04,981						
32 30, 961 33 93, 981 34 96, 981 35 99, 981 36 102, 981 37 105, 981 38 108, 981 39 111, 981 40 114, 981 41 117, 981 42 120, 981		31	07,901						
33 35,301 34 96,981 35 99,981 36 102,981 37 105,981 38 108,981 39 111,981 40 114,981 41 117,981 42 120,981		32	02 001						
36 39,981 36 102,981 37 105,981 38 108,981 39 111,981 40 114,981 41 117,981 42 120,981		34	95,901						
36 39,301 36 102,981 37 105,981 38 108,981 39 111,981 40 114,981 41 117,981 42 120,981		36	00.001						
37 105,981 38 108,981 39 111,981 40 114,981 41 117,981 42 120,981		36 1	02 081						
38 108,981 39 111,981 40 114,981 41 117,981 42 120,981		37 1	02,501						
39 111,981 40 114,981 41 117,981 42 120,981		38 1	03,501						
40 114,981 41 117,981 42 120,981		30 1	11 981						
41 117,981 42 120,981		10 1	1/ 981						
42 120,981		40 1	17 981						
		42 1	20.981						
43 123 981		43 1	23 981						
44 126 981	_	44 1	26,981						

Gru	uppo A1 Tyr STI	D ATP.xls	[modalità comp	oatibilità] - Excel			
pagina	Formule	Dati	Revisione	Visualizza	Guida		
~ 10	∽ A^ Aĭ	ΞΞ	≡ %~	eb Testo a capo			
⊞ - ≤	<u>×</u> <u>A</u> ~	$\equiv \equiv$	≣≣≣	🔁 Unisci e allin	ea al centro	~	[
attere	L2		Allin	neamento		R]	

=INDIRETTO(INDIRIZZO(CELLA("riga";B1);4+3*CELLA("col";A1);4;1;"originale")

	A	BA BI		0	E	F	0
	lime (sec)	<u>R2 R1</u>	<u>R3 R1</u>	<u>R4 R1</u>	<u>R5 R1</u>	<u>R6 R1</u>	<u>R7 R1</u>
-	0,981				_		
5	3,981						
	6,981						
)	9,981						
5	12,981						
	15,981						
3	18,981						
)	21,981						
0	24,981						
1	27 981		1	1	-	1	_
2	30 T	racci	narol	a for	mula	dolla	
3	33	asci	larel		nuid	uend	
4	36	acoll	- D1 -	doc+	ra na	r +11++	`
5	- 39 C	asen	aDId	uest	ra pe	i tutte	=
6	42	o righ	o con	In DO	ור		
1	45	e rigi	e con	ie Rt			
8	48		_		_	_	
9	51,981						
0	54,981						
1	57,981						
2	60,981						
3	63,981						
4	66,981						
5	69,981						
6	72,981						
7	75,981						
8	78,981						
9	81,981						
0	84,981						
1	87,981						
2	90,981						
3	93,981						
4	96,981						
5	99,981						
6	102,981						
7	105,981						
8	108,981						
9	111,981						
0	114,981						
1	117,981						
2	120,981						
3	123,981						
4	126,981					_	
							-

8. Nella Colonna A riportare la scala dei tempi :

Ricordare che abbiamo impostato un'acquisizione ogni 3s

Time(sec) → 0,3,6

- Trascinare il quadratino verde con i tre tempi (0,3,6) selezionati verso il basso per tutta la durata dell'esperimento
- O fare doppio click sul quadratino verde per estendere la formula

out di	pagin	a Forn	nule D	ati Revi	sione \	/isualizza	Guida		
		10 × A*	≡	= _ }	%₂at). Testo a car		Ge	
					~ C(- -		00	
5 ~	v	<u>_</u> ~ <u>_</u>	<mark>4</mark> ~ ≣	$\equiv \equiv $	←= →= ∰	Unisci e all	inea al centr	o ~ [[[2011
Ca	rattere		L2		Allinear	mento		F3	
	VI.								
¢	N								
		A	B	C	D	E	F	G	ļ
	1	Time (sec)	R2 R1	R3 R1	R4 R1	R5 R1	R6 R1	R/ R1	,
	2	2	0,7503	+ 0,14100 0 16200	0,00556	0,05270	1,0642	0,60657	
ei	3	C	0,7735	0,10209	0,07031	0,09423	1,1404	0,03230) :
	4	0	0,7620	5 0,10043	0,0001	0,03524	1,17005	0,02505	2
	6	12	0,7035	5 0,1432	0,7302	0,04337	1,10745	0,0100) 2
	7	12	0,7000	0,10091	0,03270	0,67003	1,03014	0,5503) 5
	0	10	0,7505	2 0,13033	0,01123	0,05505	1 12/1	0,0013) :
	0	21	0,7730	5 0,15021	0,00703	0,00704	1 19609	0,0003	1
	10	24	0 7958	1 0 16015	0,03034	0,63637	1 15292	0.6251	i
	11	27	0,1000	0,10013	0,01303	0,00314	1 1817/	0.62/36	
	12	30	0,8068	1 0 16804	0.87285	0,03343	1 19169	0.61873	ł
	13	33	0,0000	5 0 17066	0.85374	0,07532	1 1377	0,61375	ł
	1/	36	0,00173	7 0 1/708	0.81/13	0,65056	1 10607	0.59585	÷
	15	39	0,7960/	1 0 15072	0.8147	0,65026	1 11382	0.59425	
	16	12	0,7300	0,15072	0.7989/	0,65166	1,11302	0,53423	į
	17	42	0,7738	1 0 1/969	0,13034	0,03100	1 08932	0,02200	i
	18	48	0 7865	B 0 14641	0.82609	0 63944	1 12824	0 62475	i
	19	51	0 7941	6 0 15429	0.84516	0 64082	1 07764	0.64736	5
	20	54	0 7860	9 0 153	0.81602	0.64569	1 10851	0.65166	
	21	57	0 7985	7 0 14996	0 82894	0 6438	1 10668	0.63991	i
	22	60	0.8258	5 0.15644	0.88977	0.6788	1,14274	0.66719)
	23	63	0.8079	8 0.14889	0.81375	0.64289	1,11623	0.64539	,
	24	66	0.8078	9 0.14829	0.82776	0.66414	1,12524	0.66453	3
	25	69	0.8227	9 0.16151	0.88093	0.68005	1,14919	0.69977	i
	26	72	0.8021	1 0.1496	0.8173	0.63933	1.08211	0.66957	7
	27	75	0.7966	9 0.14803	0.7969	0.63853	1.0754	0.64553	3
	28	78	0.8149	2 0.15515	0.82323	0.65394	1,13205	0.65284	i
	29	81	0.8036	5 0.14725	0.81863	0.63452	1.09608	0.64335	ĵ
	30	84	0.83404	4 0,16331	0,86269	0,66895	1,16773	0.67888	3
	31	87	0.7935	7 0.1501	0.79405	0.62758	1.07068	0.64907	i
	32	90	0,8124	6 0,14539	0,83019	0,63919	1,10908	0,65752	2
	33	93	0,8203	1 0,15126	0,80814	0,64043	1,12147	0,65668	3
	34	96	0,8255	2 0,14972	0,81494	0,63839	1,10554	0,64396	i
	35	99	0,8173	0,15282	0,84156	0,63649	1,09438	0,65752	2
	36	102	0,85404	4 0,16276	0,86844	0,64468	1,14785	0,65767	r
	37	105	0,8506	7 0,14745	0,81474	0,62827	1,11425	0,64623	3
	38	108	0,8527	0,14576	0,82471	0,62786	1,09066	0,65028	3
	39	111	0,8589	0,15005	0,81347	0,63276	1,11907	0,64158	3
	40	114	0,8542	5 0,15595	0,83552	0,62391	1,08339	0,64591	Í
	41	117	0,8750	8 0,15427	0,84475	0,63265	1,11126	0,64566	i
	42	120	0,8901	3 0,17485	0,91468	0,67077	1,19709	0,69022	!
	43	123	0,8576	9 0,15493	0,83213	0,61436	1,12214	0,63931	ſ
	44	126	0,8834	5 0,16625	0,89518	0,65322	1,14073	0,69138	5

 Copiare il foglio così ottenuto (Foglio 4) e creare un altro foglio di calcolo (Foglio 5) incollando SOLO i valori (senza le formule)

		Gru	ирро А1	Tyr STD ATP.	xls (modali	tà compati	bilità] - Exce	el	
Layout di p	bagir	a	Form	ule Dat	i Revis	ione \	/isualizza	Guida	
ial	~	10	~ A^	A =	= = *	∼ a	P Testo a cap	10	
C <u>S</u> ~			• • A	• ≡	= = •	→= E	Unisci e all	inea al centr	o ~
Cara	ttere			r <u>s</u>		Allinea	mento		ľS
√ f _x T	ime	Arial	~ 1	0 ~ A^	Aĭ 📷 - 9	6 000 🔛			
		G	⊂ ≡	⊘ <mark>, ~ A</mark> ~	÷ ~ 50	.00 ->0 🎸			
			۸ I	D	C	D	E	F	c
nti	1	2	Ta <u>gl</u> ia				R5 R1	R6 R1	R7 R
	(2	Γъ	Conia)			0,65278	1,0642	0,6
le. Salvare i	8		Cobia				0,69423	1,1404	0,6
	4	ĥ	Opzior	ni Incolla:			0,69524	1,17865	0,6
	5		· ·	······			0,64957	1,10745	0
	6			123 fx	r 🎽 🗟	5	0,67003	1,09014	0
terne a	(0,65505	1,07476	0
mo sal	8		incolla	speciale		/	0,66784	1,1341	0
	9	(i)	Ricerca	intelligente			0,69037	1,18608	0
	10	í .	<u></u>	gene			0,00514	1,15292	0
	10		Inseriso	i c <u>e</u> lle copiat	te		0,69349	1,101/4	0,6
	12						0,67952	1,19109	0,6
	12		Elimina	1			0,07043	1,13/7	0,0
	14		Cancel	la contenuto			0,05050	1,10007	0,5
	16		curreer	a congenato			0,05020	1,11302	0,0
	17	1	A <u>n</u> alisi	rapida			0,03100	1 08932	0,0
	15						0,0230	1 12824	0,0
	10		Filt <u>r</u> o			>	0 64082	1 07764	0,0
	20		Ordina			>	0.64569	1 10851	0,6
	21						0 6438	1 10668	0.6
	22	Ť	Recupe	era dati dalla	tabella/inter	vallo	0 6788	1 14274	0.6
	23						0.64289	1,11623	0.6
	24	ţ	Inseriso	i co <u>m</u> mento			0.66414	1,12524	0.6
	25	a -					0,68005	1,14919	0,6
	26	a -	Format	o celle			0,63933	1,08211	0,6
	27		Selezio	na da elenco	a discesa		0,63853	1,0754	0,6
	28						0,65394	1,13205	0,6
	29		<u>D</u> efinis	ci nome			0,63452	1,09608	0,6
	30	Ø	Collega	amento			0,66895	1,16773	0,6
	31	_	-1-9·				0,62758	1,07068	0,6
	32		90	0,81246	0,14539	0,83019	0,63919	1,10908	0,6
	33		93	0,82031	0,15126	0,80814	0,64043	1,12147	0,6
	34		96	0,82552	0,14972	0,81494	0,63839	1,10554	0,6
	35		99	0,81737	0,15282	0,84156	0,63649	1,09438	0,6
	36		102	0,85404	0,16276	0,86844	0,64468	1,14785	0,6
	31		105	0,85067	0,14745	0,814/4	0,62827	1,11425	0,6
	20		114	0,05271	0,14576	0,024/1	0,62786	1,09066	0,6
	29		114	0,00038	0,15005	0,01347	0,03276	1,11907	0,0
	40		114	0,05425	0,15595	0,03552	0,62391	1 11126	0,6
	41		120	0,89013	0.17486	0,04475	0,03205	1 19709	0,0
	43		123	0.85769	0 15493	0 83213	0,61420	1,13703	0,0
	44		126	0.88345	0.16625	0.89518	65322	1.14073	B.C
Chiudi		•)- 	Foglio2	Sheet9	origi	nale Fog	glio4	+
INVIO o sceniier	e Inco	ulla					-		

- 10. Nel **foglio 5** eliminare le righe con gli 0 (che corrispondono al tempo in cui è stata cambiata la soluzione); tener traccia di questi tempi riportandoli in una tabella come quella riportata come esempio nel foglio 2 sotto gli screenshot delle immagini
- Nel foglio 2 riportare anche il numero totale di 11. cellule
- 12. Salvare il file Excel rinominandolo con l'indicazione anche del proprio gruppo di appartenenza

Time (Seci

Analisi qualitativa (1)

- Lavorando sul foglio 5, creare dei grafici per le varie cellule analizzate durante 1. l'esperimento, selezionando due ROI alla volta; i grafici devono riportare:
 - Sull'asse X il tempo
 - Sull'asse Y i valori della Ratio
- Facendo doppio click sull'asse Y è possibile aggiustare la scala (Formato asse) in 2. modo da vedere bene i segnali (mantenere la stessa scala per tutti i grafici)

22

24

26 27

45

54

pa	igina	Form	nule Da	ati Revi	sione V	'isualizza	Guida							
	\$		The Smart A	rt 🗌 🗆	+			rin			2	··· ~		+
)	Ø	\mathbf{Q}	C. Schorm	unta v) Ottieni coi	nponenti ag	igiuntivi		Bing Maps		NX -		ni fillio	
e	lcone	Modelli		idid *			Vi	sio Data 📷		Gra	fici	Dispersi	one	
		3D ~				onenti aggii	untivi 🔹 V	isualizer 🔎	People Grap	consi	gliati 🕘 🎽	0	6 9 L	1
	Illue	trazioni				Comr	ononti aggi	untini			Crofici			\sim
	mus	trazioni				Comp	onenti aggi				Gianci	• • •		\sim
ī in	ne (se	ec)												
	10 (50												\square	
												1 XX		
		A	В	С	D	E	F	G	н	- I	J			
	1 Ti	me (sec)	R2 R1	R3 R1	R4 R1	R5 R1	R6 R1	R7 R1	R8 R1	R9 R1	R10 R1	Delle		
	2	0	0.75034	0.14166	0.80556	0.65278	1.0642	0.60857	0.65453	0.84532	0.79967	Dolle		
	3	3	0.77358	0.16209	0.87631	0.69423	1,1404	0.63296	0.68882	0.876	0.82348		0	
	4	6	0.779	0.16843	0.8581	0.69524	1.17865	0.62505	0.69723	0.90672	0.81778			
	5	9	0.76396	0.1492	0.7962	0.64957	1,10745	0.6166	0.67354	0.87914	0.80361		00	
	6	12	0.76865	0.15391	0.83276	0.67003	1.09014	0.5983	0.6656	0.85218	0.79795			
	7	15	0.75852	0.13833	0.81129	0.65505	1.07476	0.6013	0.66886	0.85665	0.79892	Altri	grafici a disp	ersione
	8	18	0,77368	0,15621	0,85783	0,66784	1,1341	0,6065	0,668	0,90131	0,80362	0,51108	0,98251	0,6673
	9	21	0,7876	0,15835	0,89854	0,69037	1,18608	0,61	0,67696	0,92244	0,80936	0,51721	0,98617	0,68471
	10	24	0,79584	0,16015	0,87503	0,68514	1,15292	0,6251	0,68701	0,90108	0,80925	0,51811	1.01314	0,68235
	11	27	0,80318	0,16557	0,91459	0,69349	1,18174	0,62436	0,69355	0,91228	0,82271	0,52026	1,03607	0,69199
	12	30	0.80681	0.16804	0.87285	0.67952	1,19169	0.61873	0.67975	0.90265	0.80697	0.51145	1.0037	0.67402
	13	33	0.80175	0.17066	0.85374	0.67643	1,1377	0.61375	0.67441	0.87759	0.80731	0.50965	0.95757	0.66233
	14	36	0,77937	0.14708	0.8143	0.65056	1,10607	0.59585	0.65941	0.87581	0.79433	0.49677	0.95574	0.65013
	15	39	0.79604	0.15072	0.8147	0.65026	1,11382	0.59425	0.65219	0.86529	0.81307	0.49398	0.96479	0.64688
	16	42	0.77679	0.15067	0.79894	0.65166	1.08656	0.62208	0.65824	0.88206	0.8007	0.49307	0.96499	0.6495
	17	45	0.77381	0.14969	0.80637	0.6298	1.08932	0.61751	0.64846	0.85879	0.79785	0.49212	0.92512	0.64052
	18	48	0.78658	0.14641	0.82609	0.63944	1,12824	0.62475	0.65677	0.87402	0.80199	0.49201	0.93874	0.63794
	19	51	0,79416	0.15429	0.84516	0.64082	1.07764	0.64736	0.66733	0.86893	0.8041	0.494	0.96538	0.63476
	20	54	0,78609	0.153	0.81602	0.64569	1,10851	0.65166	0.66274	0.87531	0.79714	0.49474	0.96389	0.65925
	21	57	0,79857	0.14996	0.82894	0.6438	1,10668	0.63991	0.68058	0.89664	0.80315	0.50015	0.94938	0.65944
	22	60	0.82585	0.15644	0.88977	0.6788	1,14274	0.66719	0.69326	0.94786	0.82653	0.51382	0.99416	0.67985
	23	63	0.80798	0.14889	0.81375	0.64289	1,11623	0.64539	0.6745	0.88639	0.80287	0.50151	0.96397	0.653
	24	66	0.80789	0.14829	0.82776	0.66414	1,12524	0.66453	0.69185	0.89021	0.80987	0.49922	0.98024	0.66099
	25	69	0.82279	0.16151	0.88093	0.68005	1,14919	0.69977	0,70546	0.93238	0.81243	0.50987	0.98908	0.68379
	26	72	0.80211	0.1496	0.8173	0,63933	1.08211	0.66957	0.69542	0.89374	0,79564	0.50255	0.95695	0.65831
	27	75	0,79669	0,14803	0,7969	0,63853	1,0754	0,64553	0,68605	0,8666	0,79786	0,50238	0,95456	0,66602
	28	78	0,81492	0,15515	0,82323	0,65394	1,13205	0,65284	0,68843	0,90322	0,81228	0,5048	0,9674	0,64827
	29	81	0,80365	0,14725	0,81863	0,63452	1,09608	0,64335	0,68507	0,89724	0,80053	0,50326	0,93879	0,65884
	30	84	0,83404	0,16331	0,86269	0,66895	1,16773	0,67888	0,72175	0,91628	0,82246	0,51882	0,99217	0,68608
	31	87	0,79357	0,1501	0,79405	0,62758	1,07068	0,64907	0,68235	0,86475	0,78578	0,50108	0,90547	0,6424
	32	90	0,81246	0,14539	0,83019	0,63919	1,10908	0,65752	0,69855	0,89666	0,80726	0,50614	0,95997	0,65881
	33	93	0,82031	0,15126	0,80814	0,64043	1,12147	0,65668	0,70293	0,90446	0,80076	0,50675	0,94614	0,65798
	34	96	0,82552	0,14972	0,81494	0,63839	1,10554	0,64396	0,70116	0,90049	0,79926	0,50561	0,93503	0,65502
	35	99	0,81737	0,15282	0,84156	0,63649	1,09438	0,65752	0,70122	0,91916	0,80286	0,50524	0,94933	0,67045
	36	102	0,85404	0,16276	0,86844	0,64468	1,14785	0,65767	0,71856	0,92007	0,80553	0,51356	0,9638	0,6686
	37	105	0,85067	0,14745	0,81474	0,62827	1,11425	0,64623	0,71668	0,92289	0,80386	0,50818	0,95853	0,65641
	38	108	0,85271	0,14576	0,82471	0,62786	1,09066	0,65028	0,71637	0,89877	0,79695	0,51125	0,9247	0,65372
	39	111	0,85898	0,15005	0,81347	0,63276	1,11907	0,64158	0,71228	0,89882	0,80309	0,51095	0,92118	0,65376
l	40	114	0,85425	0,15595	0,83552	0,62391	1,08339	0,64591	0,71804	0,90615	0,79487	0,50999	0,92947	0,6545
	41	117	0,87508	0,15427	0,84475	0,63265	1,11126	0,64566	0,71106	0,88678	0,81295	0,5101	0,95146	0,64411
	42	120	0,89013	0,17485	0,91468	0,67077	1,19709	0,69022	0,75673	0,93639	0,82214	0,52863	1,02458	0,68939
	13	123	0.85769	0 15/193	0 83213	0.61/136	1 1221/	0.63931	0 71009	0 87726	0 798/2	0 50407	0.95443	0.65135

Analisi qualitativa (2)

- 3. Inserire le etichette sugli assi X e Y cliccando con tasto + accanto al grafico e spuntando la voce «Titoli degli assi»
- 4. Inserire:

Analisi qualitativa (3)

- 5. Copiare il grafico e incollarlo come immagine nel foglio 2
- 6. Procedere in questo modo per tutte le ROI creando diversi grafici contenti ognuno due tracce

Gruppo A1 Tyr STD ATP.xls [m	odalità compatibilità] - Excel	Cerca	103 104
di pagina Formule Dati	Revisione Visualizza Guida Struttura grafico F	ormato	105 106
rme Icone Modelli 3D ~	🗄 Ottieni componenti aggiuntivi 🛛 🚺 🕞 Bing Maps	Grafici consigliati 🕘 × pivot × 3D ×	<
Illustrazioni	Componenti aggiuntivi	Grafici Fsi Tour Grafici spar	-

Analisi qualitativa (4)

7. Osservare i grafici così ottenuti e:

- eliminare le cellule (ROI) che hanno un basale molto alto

8. Calcolare le varie <u>% di risposta</u>:

- risposte alla ionomicina (controllo positivo nel protocollo 1)

risposte all'<u>ATP in tyrode standard</u> (considerando solo le cellule che hanno risposto alla ionomicina – protocollo 1)
risposte da release dagli stores (<u>ATP in 0 Ca²⁺</u> - protocollo 2)
risposte SOCE (protocollo 2)

9. Nel caso di risposte **dubbie** (come mostrato in figura) valutare sulla base dell'analisi quantitativa riportata nelle slide successive (soglia di risposta R $(340/380) \ge 0.1$)

Analisi qualitativa (5

10. Calcolare la traccia media e la deviazio standard (o errore standard) e riportarla su grafico con l'indicazione dei vari trattamenti (co

Sul **foglio 5** creare nella colonna al fondo delle ROI colonne MEAN e STD (standard deviation)

Argomenti funzione

R9 R1

12 0.76865 0.15391 0.83276 0.67003 1.09014 0.5983 0.6656 0.85218 0.79795 0.50235 0.98147 0.64744 0.62922 0.66017 0.74347 0.7808

9 0.76396 0.1492 0.7962 0.64957 1.10745 0.6166 0.67354 0.87914 0.80361 0.50468 0.98423 0.65947 0.63199 0.66725 0.75524 0.78181 0.97331 0.96606 0.73313 0.741918

1.17865 0.62505 0.69723 0.90672 0.81778 0.52409 1.01662 0.69421 0.65796 0.71071 0.80078 0.79006 1.02882 0.99155 0.75003 0.77321

R8 R1

- Calcolare il valore medio delle ROI al tempo 0
- Procedere così per tutti i tempi

ounti

-3

(sec) R2 R1

6

G

 \vee : $\times \checkmark f_x \checkmark$

R3 R1

Carattere

R4 R1

3 0.77358 0.16209 0.87631 0.69423

0.779 0.16843 0.8581 0.69524

=DEV.ST(B2:U2)

R5 R1

R6 R1

0 0.75034 0.14166 0.80556 0.65278 1.0642 0.60857 0.65453 0.84532

Fare la stessa cosa per il calcolo della DEV STD

B2:U2

R7 R1

1,1404 0,63296 0,68882

TATIVA(5)	File Home Inserisci Layout di pagina Formule Dati Revisione Visualizza Automatizza Guida
	$ \begin{array}{c} & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & $
lia e la deviazione	Incolla G C S · H · A · E Formati funzione Argomenti funzione · · · · · · · · · · · · · · · · · · ·
	Appunti 🖸 Carattere 🗊 82:12 🖲 Celle Modifica
rd) e riportarla su un	T2 \vee : $\times \checkmark f_x \checkmark$ =MEDIA(B2:T2)
vari trattamenti (come	A B C D E F G H J K L M O P Q R S T U V 1 Time (sec) R2 R1 R3 R1 R4 R1 R5 R1 R9 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1
	6 0.779 0.16843 0.6581 0.69524 1.1786 0.6250 0.69723 0.9072 0.8178 0.52649 1.01662 0.69421 0.65796 0.71071 0.80058 0.75006 1.02882 0.99155 0.75003 5 9 0.76396 0.1492 0.7962 0.64957 1.10745 0.6166 0.67354 0.87914 0.80361 0.50468 0.98423 0.65947 0.63199 0.66725 0.75524 0.78181 0.97331 0.96606 0.73313
collo 2	6 12 0.76865 0.15391 0.83276 0.67003 1.09014 0.5983 0.66566 0.85218 0.79795 0.50235 0.98147 0.64744 0.62922 0.66017 0.74347 0.74348 0.9984 0.94273 0.72929 7 15 0.75852 0.13833 0.81129 0.65505 1.07476 0.6013 0.66886 0.85665 0.79892 0.50036 0.95328 0.64418 0.62737 0.6594 0.74775 0.73066 0.73005
A TP 100 uM	8 18 0.77368 0.15621 0.85783 0.66784 1.1341 0.6065 0.668 0.90131 0.80362 0.51108 0.98251 0.6673 0.63373 0.67381 0.77571 0.79577 0.98071 0.94215 0.73404 9 21 0.7876 0.15835 0.89854 0.69037 1.18608 0.61 0.67696 0.92244 0.8096 0.51721 0.98617 0.68471 0.6581 0.7027 0.79533 0.80904 0.99285 0.99974 0.73838 10 24 0.79584 0.16015 0.87503 0.68514 1.15292 0.6251 0.68701 0.90108 0.80925 0.51811 1.01314 0.68235 0.65774 0.68577 0.7867 0.80734 1.00791 0.98734 0.74387
	11 27 0.80318 0.16557 0.91459 0.69349 1.18174 0.62436 0.69355 0.91228 0.82271 0.52026 1.03607 0.69199 0.66711 0.71383 0.79181 0.81243 1.01596 0.98544 0.75403 12 30 0.80681 0.16804 0.87285 0.67952 1.19169 0.61873 0.67975 0.90265 0.80697 0.51145 1.0037 0.65518 0.69593 0.78158 1.0272 0.99297 0.7438
Μ	13 33 0.80175 0.17066 0.85374 0.67643 1.1377 0.61375 0.67441 0.87759 0.80731 0.5965 0.95757 0.66233 0.64147 0.65807 0.78991 0.79409 1.00137 0.98651 0.741 14 36 0.77937 0.14708 0.8143 0.65056 1.0607 0.59585 0.65941 0.87581 0.79433 0.49677 0.95574 0.66123 0.64147 0.75519 0.77539 0.99917 0.95545 0.7214
and manufacture and the second	15 39 0.79604 0.15072 0.8147 0.65026 1.11382 0.59425 0.65219 0.86529 0.81307 0.49398 0.96479 0.64688 0.63075 0.64197 0.74352 0.78076 1.00756 0.9749
	17 45 0.77381 0.14969 0.80637 0.6298 1.08932 0.61751 0.64846 0.85879 0.79785 0.49212 0.92512 0.64052 0.63136 0.6435 0.77756 0.97266 0.99509 0.96725 0.72746
400 600 800 1000 1200	48 0.78658 0.14641 0.82609 0.63944 1.12824 0.65475 0.65677 0.87402 0.80199 0.49201 0.63384 0.6398 0.64948 0.79944 0.79947 0.995207 0.99529 0.7303 19 51 0.79416 0.15429 0.84516 0.64082 1.07764 0.66733 0.86893 0.8041 0.494 0.96538 0.63318 0.64422 0.74605 0.77403 1.0235 0.97845 0.73182
Sec	20 54 0.78609 0.153 0.81602 0.64569 1.10851 0.65166 0.66274 0.87531 0.79714 0.49474 0.96389 0.65925 0.64071 0.6625 0.75891 0.77213 0.997 8 0.96609 0.73696 21 57 0.79857 0.14996 0.82894 0.6438 1.10668 0.63991 0.68058 0.89664 0.80315 0.50015 0.94938 0.65944 0.63881 0.66145 0.76261 0.78488 1.0039 0.98074 0.74979
	22 60 0.82585 0.15644 0.88977 0.6788 1.14274 0.66719 0.69326 0.94786 0.82653 0.51382 0.99416 0.67985 0.6466 0.69503 0.79179 0.79156 1.0 78 0.99676 0.74784
onna al fondo delle ROI le	23 05 0.00796 0.14005 0.08151 0.00205 0.10207 0.00151 0.00037 0.00151 0.00037 0.00151 0.00037 0.00151 0.00037 0.00151 0.00037 0.00151 <th0.00151< th=""> <th0.00151< t<="" th=""></th0.00151<></th0.00151<>
hard doviation)	25 69 0.82279 0.16151 0.88093 0.68005 1.14919 0.69977 0.70546 0.93238 0.81243 0.50987 0.98908 0.6 26 72 0.80211 0.1496 0.8173 0.63933 1.08211 0.66957 0.69542 0.89374 0.79564 0.50255 0.95695 0.6 P Q R S T U V 0.74696
laru uevialion)	27 75 0.79669 0.14803 0.7969 0.63853 1.0754 0.64553 0.68605 0.8666 0.79786 0.50238 0.95456 0.6 R16 R1 R17 R1 R18 R1 R19 R1 R20 R1 MEAN STD 0.73293
	29 81 0.80365 0.14725 0.81863 0.63452 1.09608 0.64335 0.68507 0.89724 0.80053 0.50326 0.93879 0.6 0.8078 0.79026 0.78507 1.00963 0.97696 0.74404 0.764182 0.73624 0.73624
lle ROI al tempo 0	30 84 0.83404 0.16331 0.86269 0.66895 1.167/3 0.67888 0.72175 0.91628 0.82246 0.51882 0.99217 0.6 0.75524 0.78181 0.97331 0.96606 0.73313 0.741918 0.7608 31 87 0.79357 0.1501 0.79405 0.62758 1.07068 0.64907 0.68235 0.86475 0.78578 0.50108 0.90547 0/074347 0.7808 0.9984 0.94273 0.72929 0.73923 0.73476
·	32 90 0.81246 0.14539 0.83019 0.63919 1.10908 0.65752 0.69855 0.89666 0.80726 0.50614 0.95997 0.6 0.74775 0.78518 0.97245 0.9366 0.73005 0.732647 0.74785
	36 06 0.0266 0.1012 0.00014 0.00021 0.00014 0.00004 0.00049 0.79926 0.00016 0.00016 0.00014 0.99213 0.00014 0.99213 0.00012 0.00012 0.00012 0.00012 0.00014 0.99215 0.99215 0.
mpi	35 99 0.81/37 0.15282 0.84156 0.63649 1.09438 0.65/52 0.70122 0.91916 0.80286 0.50524 0.94933 0.6 0.787 0.80734 0.09734 0.4367 0.87786 0.77856 0.75901
	37 105 0.85067 0.14745 0.81474 0.62827 1.11425 0.64623 0.71668 0.92289 0.80386 0.50818 0.95853 0.6 0.78158 0.79856 1.0272 0.99297 0.7438 0.769021 0.75581 38 108 0.85271 0.14745 0.82747 0.67635 0.51125 0.9247 0.6 0.78991 0.79409 1.00137 0.98651 0.741 0.755543 0.75635
colo della DEV STD	100 0.00211 0.11010 0.02110 0.00011 0.1000 0.01120 0.02111 0.17339 0.99917 0.95545 0.72964 0.738807 0.76088 39 111 0.85898 0.15005 0.81347 0.63276 1.11907 0.64158 0.71228 0.80309 0.51095 0.92118 0.6 0.74352 0.78076 1.00756 0.97487 0.71537 0.796088
	40 114 0.85425 0.15595 0.83552 0.62391 1.08339 0.64591 0.71804 0.90615 0.79487 0.50999 0.92947 0, 0.76688 0.77637 1.00673 0.98416 0.73329 0.741684 0.77527
	Foglio2 Sheet9 originale Foglio4 Foglio5 + 0.75994 0.76904 0.99208 0.96529 0.7303 0.739943
	0.75891 0.77213 0.99928 0.96609 0.73696 0.744769
🗸 🛛 ab, 🛛 Generale 🔷 🖬 Formattazione condizio	nale \checkmark \boxplus Inserisci \checkmark \land
III > % 000 III Formatta come tabella	 Elimina Ordina D. Tenna D. Bin Ordina D. Tenna D. Bin Ordina D. Tenna D. Bin
ione	? × yrmato × √ × filtra × seleziona × 1 0.79257 0.7938 1.02579 0.99159 0.74407 0.775036
o an innuueu an 2011	Image: Celle Modifica Ri 0.76073 0.76078 0.98968 0.97906 0.73293 Image: Celle Modifica Image: Open and the second secon
	0.74553 0.77409 0.99043 0.9706 0.73624 0.78429 0.79946 1.02332 0.98204 0.7608
0.84532 0.79967 0.5083 0.96791 0.64467 0.63227 0.64657	0.76358 0.77186 0.98468 0.95771 0.71608 0.732435 0.70358 0.77186 0.98468 0.95771 0.71608 0.732435 0.70325 0.78577 1.00263 0.07360 0.73445

14

1R x 20C

0.9984 0.94273 0.72929 0.739203

Analisi quantitativa (1)

- 1. All'analisi qualitativa segue l'analisi quantitativa:
 - Eliminare le cellule che non rispondono alla ionomicina (soglia di risposta R(340/380)> 0.1)
- 2. Calcolare:
 - Ampiezza media del picco (peak amplitude) della risposta all'ATP in soluzione fisiologica Tyrode Standard (protocollo 1)
 - Ampiezza media del release (=risposta all'ATP in soluzione fisiologica 0Ca²⁺ 0.5 mM EGTA protocollo 2)
 - Ampiezza media del picco SOCE (= ripristino del Ca²⁺ extracellulare mediante soluzione fisiologica Tyrode Standard – protocollo 2)

Basal mean

Analisi quantitativa (2)

Analisi dell'ampiezza del picco della risposta in seguito a stimolazione con ATP (in soluzione fisiologica TYR STD o 0Ca²⁺ 2mM EGTA)

- 1. Copiare la riga 1 del foglio 5 e riportarla al fondo del foglio
- 2. Riportare la scritte 'basale'; 'peak' e 'peak ampl' sotto la riga appena copiata

425	1272	2.71437	1.27712	2.72074	1.91936	4.17265	4.01474	3.97267	4.20671	5.41199	3.09557
426	1275	2.81657	1.31342	2.78389	1.95331	4.19379	4.00743	3.93693	4.25198	5.46309	3.1754
427	1278	2.68235	1.26108	2.73061	1.90994	4.15236	4.0564	4.05184	4.164	5.49348	3.1172
428	1281	2.63801	1.2422	2.67015	1.88567	4.06963	3.94434	3.85854	4.16264	5.31548	3.103
429	1284	2.77946	1.35459	2.81459	1.9574	4.23858	4.0741	4.01439	4.28434	5.52835	3.209
430	1287	2.7139	1.28156	2.75765	1.93752	4.23425	3.97431	3.929	4.1874	5.54633	3.168 6
431	1290	2.7012	1.27073	2.66154	1.89392	4.23618	4.02616	3.88436	4.25353	5.51262	3.1922
432	1293	2.69682	1.29257	2.6979	1.92297	4.13503	3.97761	4.06839	4.21872	5.5193	3.19 87
433	1296	2.76663	1.31254	2.80826	1.94072	4.30776	4.08533	4.06875	4.33102	5.60294	3.27 78
434	1299	2.81471	1.35035	2.80916	1.97694	4.30624	3.99894	4.0739	4.35936	5.63321	3.2
435	1302	2.75215	1.26856	2.72903	1.94146	4.14996	4.00275	4.1544	4.28256	5.59172	3.1 229
436	1305	2.75867	1.33525	2.77148	1.95651	4.24162	4.12819	4.1318	4.3145	5.63574	3.2 407
437	1308	2.86534	1.37462	2.90631	1.97851	4.26426	4.09318	4.0731	4.42339	5.74528	3.2 262
438	1311	2.7371	1.37078	2.76342	2.01121	4.2699	4.16247	4.11983	4.39361	5.85313	3. 341
439	1314	2.79766	1.34137	2.81934	1.99335	4.20616	4.20705	4.18303	4.3764	5.75802	3. 7059
440	1317	2.79715	1.31815	2.82733	1.9935	4.3433	4.31146	4.16849	4.44626	5.98275	3 2244
441	1320	2.66631	1.33323	2.73014	1.95564	4.24375	4.02521	4.08927	4.34425	5.731	3 2117
442	1323	2.77962	1.37632	2.82005	1.98643	4.21071	4.26821	4.27	4.40524	5.78071	8.278
443	1326	2.77157	1.34567	2.7885	1.98918	4.29707	4.2061	4.20858	4.32457	5.84735	71
444	1329	2.8534	1.38642	2.9236	2.05655	4.41209	4.38024	4.30469	4.55192	6.06865	4561
445	1332	2.68707	1.38166	2.80125	2.00659	4.1946	4.4001	4.28008	4.41963	5.85479	3.33438
446	Time (sec)	R2 R1	R3 R1	R4 R1	R5 R1	R6 R1	R7 R1	R8 R1	R9 R1	R10 R1	R11 R1
447	\sim										
448											
449	Basale										
450											
451	Peak										
452											
453	Peak ampl	it									
454											
455	\sim										
	$\langle \rangle$	Foalia	2 Shee	et9 orio	inale F	oalio4	Foglio5	+			
				ong		- 5					

Fi	ile H	lome	Inserisci	Layou	ıt di pag	ina Fo	rmule	Dati F	Revision	e Visual	lizza A	uto
E				3	mmagin	i 🗸 🕜 M	Modelli 3	D ¥			? 🛍	~ [
	ן ←ן	<u> </u>							\sim		· 	
Та	bella Ta	abelle piv	/ot Tabel	la 🕛	-orme •	4 🖃 🗅	smartArt		Checkbo	x Graf	fici 🎌	*
ni		oncialia	to		cone		Schermat	a v	011001100	consid	aliati 📣	~
ph	01 0	Jonsigna	le	-0	conc	<u>0</u> +-	Jerrennia			CONSIG		
		Tabelle				Illustrazior	ni		Co Arial	~ 10	~ A^ A	بر ال
A1	<u> </u>	~] : [×	$\checkmark f_x \lor$	Time (sec	:)				G	$c \equiv a$	~ A 、	,
	А	В	С	D	E	F	G	н				
Ti	me (sec)	R2 R1	R3 R1	R4 R1	R5 R1	R6 R1	R7 R1	R8 R1	R9 -	DIO DI		
2	0	0.75034	0.14166	0.80556	0.65278	1.0642	0.60857	0.65453	Cerc	a nei menu		
3	3	0.77358	0.16209	0.87631	0.69423	1.1404	0.63296	0.68882				
4	6	0.779	0.16843	0.8581	0.69524	1.17865	0.62505	0.69723	4 X	Taglia		
5	9	0.76396	0.1492	0.7962	0.64957	1.10745	0.6166	0.67354		5		
6	12	0.76865	0.15391	0.83276	0.67003	1.09014	0.5983	0.6656		<u>C</u> opia		
/	15	0.75852	0.13833	0.81129	0.65505	1.0/4/6	0.6013	0.66886				
0	10	0.77308	0.15021	0.00763	0.60027	1.1341	0.6005	0.000		Opzioni I	ncolla:	
9 10	21	0.7670	0.15035	0.87503	0.68514	1 15202	0.6251	0.68701				
11	24	0.73304	0.16557	0.07303	0.00014	1 1817/	0.62/36	0.60355				
12	30	0.80681	0 16804	0.87285	0.67952	1 19169	0.61873	0.67975				
13	33	0.80175	0.17066	0.85374	0.67643	1,1377	0.61375	0.67441	2	Incolla spe	eciale	
14	36	0.77937	0.14708	0.8143	0.65056	1.10607	0.59585	0.65941	2			
15	39	0.79604	0.15072	0.8147	0.65026	1.11382	0.59425	0.65219	c	Inserisci		
16	42	0.77679	0.15067	0.79894	0.65166	1.08656	0.62208	0.65824	(
17	45	0.77381	0.14969	0.80637	0.6298	1.08932	0.61751	0.64846	(Elimina		
18	48	0.78658	0.14641	0.82609	0.63944	1.12824	0.62475	0.65677	(_		
19	51	0.79416	0.15429	0.84516	0.64082	1.07764	0.64736	0.66733	4	Cancella c	on <u>t</u> enuto	0
20	54	0.78609	0.153	0.81602	0.64569	1.10851	0.65166	0.66274	9			
21	57	0.79857	0.14996	0.82894	0.6438	1.10668	0.63991	0.68058		Eormato c	elle	
22	60	0.82585	0.15644	0.88977	0.6788	1.14274	0.66719	0.69326				
23	63	0.80798	0.14889	0.81375	0.64289	1.11623	0.64539	0.6745		Altezza ric	ghe	
24	00	0.00709	0.14629	0.02//0	0.00414	1.12024	0.00403	0.09100		_	-	
26	72	0.02279	0.10151	0.00093	0.00000	1.14919	0.09977	0.70540		Nascond <u>i</u>		
27	75	0 79669	0 14803	0 7969	0.63853	1 0754	0.64553	0.68605	1			
28	78	0.81492	0.15515	0.82323	0.65394	1.13205	0.65284	0.68843	c	Scop <u>r</u> i		
29	81	0.80365	0.14725	0.81863	0.63452	1.09608	0.64335	0.68507	0.89724	0.80053	0.50326	0.9
30	84	0.83404	0.16331	0.86269	0.66895	1.16773	0.67888	0.72175	0.91628	0.82246	0.51882	0.9
31	87	0.79357	0.1501	0.79405	0.62758	1.07068	0.64907	0.68235	0.86475	0.78578	0.50108	0.9
32	90	0.81246	0.14539	0.83019	0.63919	1.10908	0.65752	0.69855	0.89666	0.80726	0.50614	0.9
33	93	0.82031	0.15126	0.80814	0.64043	1.12147	0.65668	0.70293	0.90446	0.80076	0.50675	0.9
34	96	0.82552	0.14972	0.81494	0.63839	1.10554	0.64396	0.70116	0.90049	0.79926	0.50561	0.9
35	99	0.81737	0.15282	0.84156	0.63649	1.09438	0.65752	0.70122	0.91916	0.80286	0.50524	0.9
36	102	0.85404	0.16276	0.86844	0.64468	1.14785	0.65767	0.71856	0.92007	0.80553	0.51356	0.
3/	105	0.85067	0.14/45	0.81474	0.62827	1.11425	0.64623	0.71668	0.92289	0.80386	0.50818	0.9
38	108	0.852/1	0.145/6	0.824/1	0.62786	1.09066	0.65028	0.7103/	0.898//	0.79695	0.51125	0.0
59	111	0.85898	0.15005	0.81347	0.03276	1.11907	0.04158	0.71228	0.89882	0.80309	0.51095	0.9

Analisi quantitative (3)

Analisi dell'ampiezza del picco della risposta in seguito a stimolazione con ATP (TYR STD 0 0Ca2+ 2mM EGTA)

- Calcolare il Basale 3.
 - Selezionare, per le diverse ROI, i valori dei 30 sec (10 valori) prima della stimolazione con l'agonista ed evidenziarli
 - Calcolare il valor medio di questi 10 valori e riportarlo in 421 • fondo al foglio 5 accanto alla scritta 'basale'

1257

1281

1284

1287

1290

1293

1296

1299

1302

1305

1308

1311

1314

1317

1320

1323

1326

1329

1332

446 Time (sec) R2

449 Basale 450 451 Pea 452 453 Peak amplit 454 < >

422

423

424

425

426

427

428

429 430

431

432

433 434

435

436

437

438

439

440

441

442

443

444

445

2.74185

1260 2.72762

1263 2.70214

1266 2.69504

1269 2.81034

1272 2.71437

1275 2.81657

1278 2.68235

2.63801

2.77946

2.7139

2.7012

75215 1.268

.75867 1.3352

2.86534

2.7371

.79766

.79715 1.318

MEDIA(B62:B71)

Foglio2 Sh

2.69

1.3332 .66631

77962 1.3763

Trascinare la formula lungo tutta la riga per tutte le ROI

							Fi	le F	lome	Ir	nserisci	Layou	ıt di pag	gina Fo	ormule	Ð
												~	10 ~	A^ A`	=	_
							Ind	.olla ∨ ≪	3	G	С <u>с</u>	5 ~ 📃	~ 🖓	~ <u>A</u> ~		
							A	Appunti	ы			Caratter	e			
							B62		-	×	$f_x \sim$	=MEDIA(B62:B71)		
								Δ	B		C	D	F	F	G	
						4	13	123	0.857	769	0 15493	0.83213	0.61436	1 12214	0.63	931
						4	14	126	0.883	345	0.16625	0.89518	0.65322	1.14073	0.6	Ara
						4	15	129	0.872	291	0.16999	0.89273	0.65511	1.18932	0.6	arg
						4	16	132	0.871	35	0.15781	0.86549	0.63613	1.10018	0.6	MED
						4	17	135	0.875	512	0.16859	0.90567	0.65006	1.16869	0.6	
						4	18	138	0.860)37	0.15337	0.84389	0.63638	1.13205	0.	
						4	19	141	0.840	97	0.15024	0.82389	0.62538	1.09577	0.	
						ł	50	144	0.827	768	0.15197	0.81745	0.64395	1.10834	0.6	
						ļ	51	147	0.821	16	0.14735	0.81184	0.62131	1.10758	0.6	
						ļ	52	150	0.838	881	0.16285	0.84253	0.6412	1.1138	0.6	
						Į	53	153	0.839	971	0.16473	0.87454	0.652	1.13449	0.6	
74185 1	.26918	2.7284	1.917	4.15846	3.9	ł	54	156	0.852	261	0.16613	0.891	0.66867	1.22991	0.6	
72762 1	.27813	2.71199	1.9036	4.04222	3.8	ł	55	159	0.839	903	0.15667	0.86481	0.64201	1.12876	0.	
70214 1	.24259	2.68522	1.87418	4.02381	3.7	!	56	162	0.82	282	0.15532	0.84366	0.63623	1.15971	0.6 F	Restit
59504 1 81034 1	.27844	2.68382	1.88397	4.08057	3.8	ł	57	165	0.806	645	0.14669	0.80204	0.61422	1.07671	0.	
71437 1	.27712	2.72074	1.91936	4.17265	4.0	ł	58	168	0.833	325	0.15353	0.86116	0.63419	1.10628	0.6	
81657 1	.31342	2.78389	1.9500		1.0		59	171	0.835	522	0.16969	0.91323	0.6744	1.22443	0.6	
58235 1	.26108	2.7300	1.90994	4.15236	4.	6	60		0.819	977	0.16404	0.84773	0.64186	1.13123	0.6	
77946 1	.35	2.81459	1.9574	4.00903	4	6	51	177	0.01	22	0.15025	0.83764	0.63015	1.11742	0.6	D
.7139	-0156	2.75765	1.93752	4.23425	3.9	6	52	180	0.812	237	0.15814	0.85087	0.63095	1.17511	0. '	cisuit
.7012 1	.27073	2.66154	1.89392	4.23618	4.0	6	53	183	0.810	69	0.16188	0.85941	0.6467	1.11976	0.6	Guida
59F 2 1	.29257	2.6979	1.92297	4.13503	3.9	(54	186	0.804	18	0.14975	0.82114	0.63236	1.11356	0.6	Juna
1471 1	.35035	2.80916	1.97694	4.30624	3.9 Risult	6	65	189	0.795	576	0.15826	0.83197	0.63007	1.11188	0.66	904
75215 1	.26856	2.72903	1.94146	4.14996	4.0 Guida	6	66	192	0.790	025	0.15836	0.80712	0.62681	1.05842	0.67	239
75867 1	.33525	2.77148	1.95651	4.24162	4.1	6	57	195	0.805	644	0.143	0.84397	0.62759	1.14199	0.69	183
7371 1	.37462	2.90631	1.9/851	4.26426	4.09318	6	68	198	0.822	246	0.15787	0.90921	0.6626	1.2004	0.69	849
79766 1	.34137	2.81934	1.99335	4.20616	4.20705	6	59	201	0.786	67	0.15943	0.85883	0.6436	1.11515	0.66	954
79715 1	.31815	2.82733	1.9935	4.3433	4.31146		70	204	0.762	263	0.14217	0.78981	0.61536	1.03322	0.65	123
36631 1	.33323	2.73014	1.95564	4.24375	4.02521		71	207	0.818	352	0.16558	0.93516	0.6644	1.20608	0.70	<u>466</u>
77157 1	34567	2.82005	1.98643	4.21071	4.20821		72	210	\sim							
.8534 1	.38642	2.9236	2.05655	4.41209	4.38024		(3	213	0.810	132	0.14511	0.8049	0.63643	1.12228	0.69	559
8707 1	.38166	2.80125	2.00659	4.1946	4.4001		(4	216	0.954	11	0.1581	0.9007	0.66498	1.09914	0.74	566
R3	K1 R	4 R1	K5 R1	K6 R1	R7 R1		(5	219	1.714	182	0.16967	1.36095	0.85916	1.11215	1.30	853
							(6)	222	1./93	556	0.21018	1.68879	1.00564	1.21819	1.53	533
DIA(B62:	B71)						70	225	1.77	41	0.22401	1.69886	1.04559	1.14004	1.52	387
							8	228	1./57	62	0.24493	1.78325	1.11334	1.1659	1.54	518
							9	231	1.703	543 170	0.25414	1.78109	1.1084	1.20459	1.47	947
					-	8	30	234	1.668	373	0.24054	1.76384	1.0794	1.12966	1.44	188
							51	237	1.69	126	0.25413	1.86074	1.13311	1.24/96	1.47	026
Foglio2	Sheets	9 orig	inale	oglio4	Foglio5)	32	240	1.67	/3	0.24803	1.86733	1.13804	1.23852	1.45	288
						-	<	>	Fo	glio2	Shee	et9 orig	inale	oglio4	Foglio	5

Analisi quantitativa (4)

Analisi dell'ampiezza del picco della risposta in segu a stimolazione con ATP (TYR STD o 0Ca²⁺ 2mM EGTA)

- Calcolare l'ampiezza del picco della risposta 4.
 - Selezionare, per le diverse ROI, l'intervallo di valori dura la stimolazione con l'agonista considerato ed evidenziarlo
 - Calcolare il valore MAX di questi dati e riportarlo in fond foglio 5 accanto alla scritta peak
 - Trascinare la formula lungo tutta la riga per tutte le ROI ٠
- Calcolare la peak amplitude 5.
 - Differenza tra peak basale ۲
 - Trascinare la formula lungo tutta la riga per tutte le ROI

	Arial VIO V A^ A`
** _	Incolla $\mathbf{G} \subset \underline{S} \times \mathbf{H} \times \mathbf{A} \times \mathbf{A}$
ITO	→ 💞 Appunti 🖾 Carattere
	$B73 \qquad \lor \ \vdots \qquad \checkmark \qquad f_x \lor \qquad 0.81032$
	67 195 0.80544 0.143 0.84397 0.62759 1.14199 0.09183 0 68 198 0.82246 0.15787 0.90921 0.6626 1.2004 0.69849 0. 60 2011 0.79677 0.45042 0.65882 0.6426 1.141545 0.66656 0.0
	09 201 0.76263 0.15943 0.63663 0.0430 1.11313 0.06934 0. 70 204 0.76263 0.14217 0.78981 0.61536 1.03322 0.65123 0. 1 207 0.84853 0.45558 0.03548 0.6844 1.30608 0.70686 0.
nte	
	74 216 0.95411 0.1581 0.9007 0.66498 1.09914 0.74566 0.
)	76 222 1.7936 0.21018 1.68879 1.00564 1.21819 1.53533 1. 77 225 1.7741 0.2244 1.68879 1.00564 1.21819 1.53533 1.
	71 228 1.75762 0.24498 1.78325 1.11334 1.16504 1.54618 1.4
	0 234 1.66873 0.24054 1.76384 1.0794 1.124766 1.44188 1.1 1 237 1.6926 0.24154 1.76384 1.0794 1.12966 1.44188 1.1
	240 1.6773 0.24803 1.86733 1.13804 1.23852 1.45688 1.0 33 243 1.66413 0.2470 1.76343 1.09277 1.14171 1.43528 1.1
	////
	178 528 1.07428 0.28248 1.36948 0.94247 1.45518 1.11741 1.144
	179 531 1.0965 0.28232 1.38102 0.93298 1.48352 1.12856 1.1246 180 534 1.06977 0.26783 1.32077 0.89933 1.40832 1.09563 1.0997
427 1278 2.6823 1.26108 2.73061 1.90994 4.15236 4.0564 4.05184 4.162 428 1281 2.638 1.2422 2.67015 1.88567 4.06963 3.94434 3.85854 4.1624	81 537 1.10343 0.27915 1.41145 0.92765 1.47645 1.13795 1.124 82 540 1.09268 0.27804 1.3877 0.91708 1.52061 1.10778 1.120
429 1284 2.779 6 1.35459 2.81459 1.9574 4.23858 4.0741 4.01439 4.28434 430 1287 2.7 9 1.28156 2.75765 1.93752 4.23425 3.97431 3.929 4.1874	33 543 1.09/41 0.27/27 1.39054 0.90652 1.46/13 1.1011/ 1.1005 184 546 1.03763 0.25243 1.28621 0.87921 1.38376 1.04733 1.0717
431 1290 2.7 12 1.27073 2.66154 1.89392 4.23618 4.02616 3.88436 4.2535; 432 1293 2.66382 1.29257 2.6979 1.92297 4.13503 3.97761 4.06839 4.21872	105 549 1.04533 0.26405 1.28051 0.89232 1.40734 1.0649 1.076 106 552 1.05734 0.26251 1.28808 0.88589 1.4118 1.05019 1.0726
433 1296 2.7 363 1.31254 2.80826 1.94072 4.30776 4.08533 4.06875 4.33102 434 1299 2.471 1.35035 2.80916 1.97694 4.30624 3.99894 4.0739 4.3593f	18 555 1.08339 0.28109 1.34773 0.91449 1.43803 1.08512 1.0750 188 558 1.05779 0.27085 1.40446 0.90297 1.44072 1.05359 1.0617
435 1302 2 5215 1.26856 2.72903 1.94146 4.14996 4.00275 4.1544 4.28256 1302 1 2 5215 1.26856 2.72903 1.94146 4.14996 4.00275 4.1544 4.28256	189 561 1.06687 0.25844 1.38118 0.92687 1.48436 1.07446 1.088 190 564 1.06636 0.24277 1.27308 0.85346 1.32202 1.00911 1.037
430 1303 2 3007 1.3323 2.77140 1.3033 4.24102 4.12019 4.1310 4.314 437 1308 2 6534 1.37462 2.90631 1.97851 4.26426 4.09318 4.0731 4.42335	191 567 <u>1.06731</u> 0.2324 1.4168 0.90688 1.47291 1.06767 1.0870 192 570
438 1311 1.37078 2.76342 2.01121 4.2699 4.16247 4.11983 4.39361 439 1314 79766 1.34137 2.81934 1.99335 4.20616 4.20705 4.18303 4.3764	193 (73 1.14695 0.25937 1.35628 0.9214 1.50505 1.08919 1.116 194 576 1.16756 0.27366 1.41158 0.95259 1.48794 1.09701 1.105
440 1317 79715 1.31815 2.82733 1.9935 4.3433 4.31146 4.16849 4.4462t 441 1320 66631 1.33323 2.73014 1.95564 4.24375 4.02521 4.08927 4.34425	195 579 1.15908 0.2784 1.41472 0.92962 1.48638 1.06053 1.0726 196 582 1.15255 0.27711 1.39795 0.93571 1.45943 1.05288 1.0716
442 1323 .77962 1.37632 2.82005 1.98643 4.21071 4.26821 4.27 4.40524	197 585 1.11573 0.27468 1.377 0.92004 1.40263 1.03511 1.0557 198 588 1.0755 0.26047 1.36843 0.9477 1.377 1.01373 1.0348
443 1320 1.7131 1.34301 2.7663 1.36316 4.25101 4.2001 4.2003 4.32431 444 1329 2.8534 1.38642 2.9236 2.05655 4.41209 4.38024 4.30469 4.55192	199 591 1.05818 0.26045 1.28172 0.90487 1.33557 0.9933 1.0066 200 594 1.04849 0.26197 1.33134 0.92385 1.30392 0.97567 1.0136
445 1332 2.68707 1.38166 2.80125 2.00659 4.1946 4.4001 4.28008 4.4196: 446 Time (sec) 2.84 R3 R1 R4 R1 R5 R1 R6 R1 R7 R1 R8 R1 R9 R1	201 597 1.05864 0.26509 1.34563 0.94252 1.34458 0.97966 1.0096 202 600 1.04729 0.26835 1.38318 0.93569 1.35118 0.99787 0.993
447	203 603 1.00393 0.2645 1.325 0.95521 1.30884 0.96034 0.984
449 Basale 0.0009	204 000 1.0021 0.2761 1.30721 0.90464 1.27166 0.92976 0.966 205 609 0.96689 0.25004 1.27701 0.95464 1.24301 0.89746 0.935 206 619 0.90257 0.24444 1.25526 0.0473
430 451 Peak =MAX(B73:B191)	206 612 0.92337 0.24411 1.22333 0.91775 1.19061 0.87233 0.915 207 615 0.95682 0.26511 1.35468 0.96626 1.283 0.89198 0.937
452 453 Peak amplit	208 618 0.91836 0.24224 1.33753 0.9588 1.24506 0.86589 0.906 209 621 0.92578 0.25811 1.35513 1.0091 1.28812 0.86845 0.907
454 455	210 624 0.85575 0.23596 1.27466 0.96812 1.19782 0.83835 0.8664 211 627 0.87645 0.24515 1.29238 0.98942 1.24666 0.83017 0.8556
456	212 630 0.85294 0.2265 1.26522 0.94173 1.20669 0.78946 0.8272 213 633 0.83576 0.23022 1.27561 0.68704 1.24031 0.80266 0.8272
Foglio2 Sheet9 originale Foglio4 Foglio5	Foglio2 Sheet9 originale Foglio4 Foglio4
	Dronto Parassihilità: non disponibile

File

Home Inserisci Layout di pagina Formule

0.15787 0.90921 0.6626 1.2004 0.69849 0.76788 0.94647

0.15943 0.85883 0.6436 1.11515 0.66954 0.74277 0.8732 0.14217 0.78981 0.61536 1.03322 0.65123 0.72373 0.85415 0.16558 0.93516 0.6644 1.20608 0.70466 0.77605 0.9605

0.4511 0.8049 0.63643 1.12228 0.69559 0.75428 0.92957

1.86733 1.13804 1.23852 1.45688 1.63927

1.76343 1.09227 1.14171 1.43528 1.55726 1.05802

1.36948 0.94247 1.45518 1.11741 1.1442 1.93714

1.38118 0.92687 1.48436 1.07446 1.08812 2.0451

1 27308 0 85346 1 32202 1 00911 1 03758 1 91387 1.4168 0.90688 1.47291 1.06767 1.08707 2.04513

1 27561 0 06700 1 2/031 0 20226 0 2202/ 1 6006/

0.9007 0.66498 1.09914 0.74566 0.86995 0.95487

=

0.7606 0.94149

1 513

1.69364

1 66458

1.69433

1 65973

1.60562

1 65837

1 12489 1 87756

1.12095 1.97889

1.06173 1.9496

1.07169 2.01822

1 80436

1 93406

1.93859

1 8748

1 87406

1 92059

1.95127

2 1024

2.0818

2 0182

1 94742

1 88363

1 8426

1.82569

1 85782

1 81039

1.75969

1 75763

1 68123

1.64822

1 68981

1.706

1.5783

1.6331

0.82723 1.58775

Foglio5

1.283 0.89198 0.93738 1.70815

0.9934

1.03455

1 0074

1.04179

1 0700

1.0402

1 1134

1 1 1 9 1 9

Analisi quantitativa (4)

Analisi dell'ampiezza del picco della risposta in seguito a stimolazione con ATP (TYR STD o 0Ca²⁺ 2mM EGTA)

- Una volta ottenuti i valori della Peak ampl per tutte le ROI calcolare quante sono le risposte (soglia di risposta R(340/380)> 0.1)
- 7. Calcolare la percentuale di risposte rispetto al numero di cellule considerate
- 8. Procedere nel calcolare la Peak amplitude anche per gli altri segnali:

Ionomicina

induzione SOCE

ATT. Basale: medie dei valori 30 sec prima del segnale da analizzare (10 cicli)

nta 😤 Accassibilità: non disponibile

442	1323	2.11902	1.37032	2.02000	1.90045	4.21071	4.20021	4.21	4.4
443	1326	2.77157	1.34567	2.7885	1.98918	4.29707	4.2061	4.20858	4.3
444	1329	2.8534	1.38642	2.9236	2.05655	4.41209	4.38024	4.30469	4.5
445	1332	2.68707	1.38166	2.80125	2.00659	4.1946	4.4001	4.28008	4.4
446	Time (sec)	R2 R1	R3 R1	R4 R1	R5 R1	R6 R1	R7 R1	R8 R1	R9 R
447									
448	ATP								
449	Basale	0.800898	0.15544	0.85075	0.63804	1.12756	0.68091	0.75542	0.9
450									
451	Peak	1.79356	0.30781	1.95592	1.17414	1.59007	1.54618	1.69433	2.0
452									
453	Peak amp	0.992662	0.15237	1.10517	0.5361	0.46251	0.86527	0.93892	1.1
454									
455									
456									
457		Roi totale 19	19						
458		Roi scartate	0						
459		Risp	19						
460		Percentuale ripost	100.00%						
461									
462	IONO o SO	DCE							
463	Basale	1.061211							
464									
465	Peak	=MAX(B193:B445)						
466			_		N				
467	Peak amp	lit 🔐							
468									
469									
470									
171									
	< >	Foglio	2 She	eet9 o	originale	Fog	lio4	oglio5	
Μ	odifica	K? Acce	ssibilità:	non dis	ponibile				

Analisi quantitativa (5)

Calcolare le **MEAN peak ampl** e la **deviazione STD** delle diverse risposte:

- con stimolazione con ATP in Tyrode Standard o in soluzione fisiologica 0Ca²⁺ 2mM EGTA
- con stimolazione con ionomicina
- per induzione del meccanismo STORE OPERATED 0Ca²⁺ ENTRY (SOCE)

Inserire i valori delle mean peak ampl (+ DEV std) così ottenuti in un **istogramma**

Confrontare le risposte alla stimolazione con ATP in Tyrode Standard o in soluzione fisiologica 0Ca²⁺ 2mM EGTA, ottenute dai due sottogruppi, creando un istogramma

IONO o So	OCE	0.00447	4.04560	0.00057	4 42 407	4.00040	4.07007	4.0402	4 60500	4 04647	4 05004	0.70000	4.06506	0.00500	4.00004	4 07400	4 704 40	4 60707	4 05057		
	Risp Percentuale ripost	19 100.00%																			
	Roi totale 19	19						Area o	del grafi	co											
Peak amp	0.992662	0.15237	1.10517	0.5361	0.46251	0.86527	0.93892	1.13418	1.0064	0.85979	0.61232	0.69578	0.755	0.41166	0.5487	1.54993	1.92348	1.90538	0.63255	MEAN PE =MEDIA(B	STD 453:T453)
Basale Peak	0.800898	0.15544	0.85075	0.63804	1.12756	0.68091	0.75542	0.91095 2.04513	0.81965	0.53518	0.93617	0.66529	0.64895	0.73536	0.79131	0.75676 2.30668	1.0162 2.93968	0.98733	0.8409		
Time (sec)) R2 R1	R3 R1	R4 R1	R5 R1	4.1940 R6 R1	4.4001 R7 R1	4.20000 R8 R1	4.4 1903 R9 R1	R10 R1	R11 R1	4.33413 R12 R1	R13 R1	4.94367 R14 R1	4.167.59 R15 R1	2.25756 R16 R1	R17 R1	5.56559 R18 R1	5.1725 R19 R1	820 R1	MEAN	STD DEV
1326 1329	2.77157 2.8534	1.34567	2.7885	1.98918	4.29707	4.2061	4.20858	4.32457 4.55192	5.84735 6.06865	3.27171	4.34932	2.27662 2.3423	4.96461 5.09821	4.2048 4.31924	2.24434 2.32564	6.16268 6.49497	5.54788 5.73125	5.21015 5.18572	3.63458 3.72342	3.87607 4.00134	1.37061

Risultati

Per ciascun esperimento riportare nella relazione finale:

- Due grafici (uno per ciascun esperimento) che rappresenti la traccia media delle cellule (con relativa deviazione standard o errore standard)
 - asse X: tempo
 - asse Y: media ratio 340/380
- le <u>% di risposta</u> ai diversi stimoli applicati
- gli istogrammi con:
 - I'ampiezza media del picco di risposta dovuto a stimolazione con <u>ATP in TYr STD</u> a confronto con quello indotto da ionomicina
 - I'ampiezza media del picco di risposta dovuto a stimolazione con ATP in TYr STD a confronto con quello in soluzione fisiologica 0Ca²⁺ 2mM EGTA
 - I'ampiezza media del picco di risposta dovuto a stimolazione con ATP in soluzione fisiologica 0Ca²⁺ 2mM EGTA a confronto con quello dovuto all'induzione del meccanismo SOCE in soluzione fisiologica Tyrode Standard
- Discutere i risultati ottenuti