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Human DNA methylomes at base
resolution show widespread epigenomic
differences

Ryan Lister'*, Mattia Pelizzola'*, Robert H. Dowen', R. David Hawkins®, Gary Hon®, Julian Tonti-Filippini®,
Joseph R. Nery', Leonard Lee”, Zhen Ye’, Que-Minh Ngo®, Lee Edsall’, Jessica Antosiewicz-Bourget™,
Ron Stewart™®, Victor Ruotti’®, A. Harvey Millar®, James A. Thomson™*"*, Bing Ren™" & Joseph R. Ecker'

DMA eytosine methylation is a central epigenetic modification that has essential roles in cellular processes including genome
regulation, development and disease. Here we present the first genome-wide, single-base-resolution maps of methylated
cytosines in a mammalian genome, from both human embryonic stem cells and fetal fibrob lasts, along with comparative
analysis of messenger RNA and small RNA components of the transcriptome, several histone modificat ions, and sites of
DMA-protein interaction for several key regubtory factors. Widespread differences were identified in the composition and
patterning of cytosine methylation between the two genomes. Nearly one-quarter of all methylation identified in embryonic
stern cells was in a non-CG context, suggesting that embryonic stem cells may use dfferent methylation mechanisms to
affect gene regulation. Methylation in non-CG contexts showed enrichment in gene bodies and dep ketion in protein binding
sites and enhancers. Non-CG methylation disappeared upon induced differentiation of the embryonic stem cells, and was
restored in induced pluripotent stem cells. We identified hundreds of diferentially methylated regions proximal to genes
involved in pluripotency and differentiation, and widespread reduced methylation levels in fibrob lasts associated with lower
transcriptional activity. These reference epigenomes provide a found ation for future studies exploring this key epigenetic
medification in human disease and development.
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Introduction

DNA cythosine methylation is a central epigenetic
modification

it affects gene regulation ad cellular
differentiation

it alters chromatine density and accessibility to
the DNA

here we present the first genome wide, single-
base resolution study of cytosine methylation in
human embryonic stem cells and fetal fibroblasts

this will show a difference in composition and
patterning of mC between the two cell lines




Methods

Cellular cultures of human H1, H9, BMP-4 induced, IMR90 and iPS
(IMR90) cells were used.

Two biological replicates were prepared for each cell line.

MethylC-Seq was performed: genomic DNA was fragmented by sonication
(50-500 bp), then ends were repaired with a nucleotide triphosphate mix
free of dCTP. Cytosine-methylated adapters were ligated for genomic DNA
library construction. DNA was isolated by 2% agarose gel electrophoresis
and sodium bisulphite (BS) conversion was performed, followed by four
cycles of PCR amplification.

MRNA-Seq, ChIP-Seq and smRNA-Seq were performed.

MethylC-Seq libraries were sequenced using the lllumina Genome
Analyzer Il (GA 1l) and reads were aligned to the human reference genome
hg18 using the Bowtie alignment algorithm. Methylated cytosines were
identified at 1% false discovery rate (FDR).

The reads from the two biological replicates were pooled to provide
greater coverage for identification of the methylcytosines.



Results



Single-base-resolution maps for DNA methylation for two human cell lines
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Supplementary Figure 1 1 Uniquely Mapped Reads and Coverage for H1 MethylC-Seq.

a, The number of uniquely mapped MethylC-seq reads for each chromosome of H1 and

IMRS0. b, The percent of the H1 and IMRI0 genomes that is covered by differing minimum 5
number of MethylG-seq reads.



a Odmcc: EmcHE CmcHH

monm "
mCl =45 = 10¢

IMRS0 M =45« 107 (4.25% of C)

ey

T5.6%
mMCG = 4.7 x

Hi mMC=62=107 (5.83%of C)

Figaire 1 | Global trends of hman DMA methdomes. a The percentage of
methyvloytosines identified for H 1 and [ME90cells in each sequence con text.

Non-CG methylation is probably a general
feature of human embryonic stem cells

EmCE mmMCHGE @mcCHH Lc
w P209 , PP O 09 O
[X[=50 'r:'r'g'f-n'l:' | lu.::' Y Y :1'¢' :
TR AL A ETHE-. SEVETER L . ‘*:i
w__ P00Q ,, PPQ O, 0@ o
pspmrso_ D099 |, 00903 |, P QTP
X [=50 'r:'r:':;:'[-? | :1-::'1" > 1 [F 1
BMP4 [H1]| YYP® L PRY T I‘ r

O 1 200,01 5.530- O X 100,016, 005 Chr 100 30LECET 441 -

200,05, TZE (W)

100,098 25T (W)

30,837 504 [W)

Figure 2 | Bisulphite- PCR validation of non-CG DMA methyation in

differentiated and stem cals. PNA methylation sequen e context is
displaved according to the key and the percentage methvlation at each

Wharth Wo-Sag

Elsiilphiem FCR

position i represented by the fill of each cncle (see Supplementary Table 2

for values). Non-CG methyated positions indicated by an asterisk are

wnkgue to that cell type amd “+ 4" indicates a mCHH that & shafted 4 bases
downst ream in H? cells. iP5, induced plunpotent stem cell.

e Like IMR9O0 cells, BMP4-induced H1 cells
lost non-CG methylation

e induced pluripotent stem (iPS) cells restore
non-CG methylation
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Supplementary Figure 2 | Direct Overlap in Methylcytosines Between the H1 and IMR90 Cell Types, and
Regional Correlation of non-CG Methylation Between Biological Replicates and mCHG/mCHH. a,
Methylcyiosines with similar sequencing depth were compared and classified as unigue to biclogical replicate 1
(red), unique to replicate 2 (yellow) or common fo both replicaies (oranges). The number of methylcyiosines in
each category is listed, as well as the percent methylcyiosines unigue within each biclogical replicate. b,
Pearzon correlation of the density of non-CG methylation sites within adjacent regions of chromosome 1 of
varying length befween the two H1 biological replicates. The correlation was determined independently for
mCHG and mCHH. ¢, Pearson correlation was computed as in panel b, comparing mCHG to mCHH density
from methylcytosine sites identified in the compesite of the two biological replicates. d, Scafter plot of mCHG and
mCHH dengity for each promoter, 5" UTH, exon, intron and 3'UTR occurrence. A blue dashed line with slope 1
along regions with equal mCHG and CHH density is displayed. Pearson cornelation is reported in the plot title.

Two biological
replicates with different
passage number are
used for each cell line

This reveales a high
concordance of
cytosine methylation
status between
replicates
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Supplementary Figure 3 | Differentually Expression of DNMT Genes In H1 and IMR90.
a, log2RPKM and b, Maximum normalized RPKM measurements of transcript abundance for
DNMT1, DNMT3a, DNMT3b, DNMT3L and GAPDH from RNA-seq. Abbreviations: RPKM,
reads per kilobase of exon model per million mapped reads.
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b, Anno] browser representation of OCTH. €, Distd bution of the
met hylation level in each sequence context. The y axds indicates the fraction

of all methylcytosines that display each methation level (x axis), when

met hylation level is the mO/C mtio at each reference cytosine (at least 10
readds required). d, Blue dots indicate methyloytosine density in H1 cells in

Although the total number of mCG sites in H1 and IMR90 cells is similar, IMR90 mCG

sites are tipically less frequently methylated

82.7% and 67.7% of all CG sites are methylated in H1 and IMR90 cells, respectively
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Supplementary Flgure 4 | The Density of Methylcytosines Identifled In Al
Chromosomes In H1 Cells. Blue dots indicate the density of all methyleytosines in 10 kb
windows._ Black rectangles indicate approximate centromere positions.

Density of methylcytosines
identified in all
chromosomes in H1 cells

 sub-telomeric regions
frequently show higher DNA
methylation density

* methylation is lower at the
centromere

* mCG density profile of H1
and IMR90 is similar

e mCHG and mCHH densities
show a moderate
correlation (Pearson
correlation = 0.5, See
Supplementary figure 2d)
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Pervasive non-CG DNA methylation in embryonic stem cells
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H1 throughouwt diferent gene-asocated regons (prometers encompass

2k upstream of the tmanscriptional start ste )l The mean mOC poofile was
nisrmal tred to the maximum value, b, Relative methylaton density within

We observe a correlation in the
density of mCG and the distance
from the TSS:

* it decreases from 2 kb upstream
of the TSS

e it increases in 5’-UTR

* it reaches similar levels in exons,
introns and 3’-UTR (as to 2 kb
upstream of the TSS)

mCHG and mCHH densities within
exons, introns and 3’-UTR are twice
as high as in the promoter

mCHH density is 15-20% higher in
exons than within introns and the
3’-UTR
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Supplementary Figure 6 | DNA Methylation at CG Islands, Transcriptional Start Sites and
Promaoters. Relative DMA methylation density at a, CG islands (1.5 kb upstream/downstream) and b,
transcriptional start sites (10 kb upstream/downstream) is displayed with downstream gene
expression and promoter CG content. Each CG island was assigned to the closest gene whose TSS
is within 10Kb. As expected, low CG contznt promoters are highly methylated, or close to highly
methyalted CG islands, and close to low expressad genes. High CG content promoters are poorly
methylated and usually close to highly expressed genes. CG and non-CG methylation density was
profiled upstream of the transcriptional start site (TS5) and have compared this to the expression of
the downstream gene, for all genes. For both proximal TSS (¢, defined as -150 bp to +150 bp across
T55) and promoter (d, defined as the region 1.5 kb upstream of the TSS) thers is a clear
anti-cormrelation of gene expression in respect to both the absoclute and relative mC content (mC/bp
and mC/C, respectively). This trend is more evident for the region proximal the TSS. Abbrevitations:
CGl, CG island. mC, methylcytosine. TSS, transcriptional start site.

...with exceptions

In regions 1.5 kb
upstream and
downstream of CG
islands and TSSs of low
expressed genes

Methylation is
mainteined high (this
corresponds to low CG
content promoters)
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Identification of links between gene activity and non-CG methylation level within the
gene body

* strand-specific RNA-Seq shows a positive correlation between gene expression and
MCHG (r=0.60) or mCHH (r=0.58) density

* no correlaton between CG methylation density and gene expression is evident in

H1 cells
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highiy-expresséd génes in H1. b, Over-representation of GO terms of genes within 20 kb of
genomic regions displaying the highest enrichment of CHG and CHH methylation. The
enrichment P-value is shown for each GO term.



Fgure 3 | Mon-CG DM Amethyl stion inH1 embryonic stem cells.

splicing factor 1. d Average relative methdation densities in each sequence
content within gene bodies on the sense or antisense strand relative b gene
diirectionality. P valwes for differen os between sense andantisense densities
are indicated. Boxesin dand & represent the quart iles and whiskers mark the
mindmum and maamom valses. & Number of mRENA intromc reads i all
genes or genes associated with non-CG endched regions, in H1 and IMR90
cells. Povahses for differences between H1 and IMR90 reads are indicated.

Enrichment of non-CG
methylation of the antisense
strand of genes enriched for
both mCHG and mCHH
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Supplementary Figure 8 | Logo Plots of the Sequences Proximal to Sites of DNA
Methylation in Each Sequence Context in H1 Cells. Logo plots are presented for all
methylcytosines, and methylcytosines that display a high methylation level (CG =75%
methylated, non-CG =25% methylated), and low methylation level (CG <75% methylated,
non-CG <25% methylated). Three bases flanking every site of methylation were analysed to
identify local sequence preferences. The information content of each base represents the
level of sequence enrichment. Local sequence enrichments were not evident when all
cytosines were analyzed, regardless of their methylation status, and the level of methylation
at a non-CG methylation site did not appear to influence the local sequence enrichment.

No local sequence
enrichment

* preference for TA
upstream
* A (or T) following C

This sequence is
preferred by DNMT3
methyltransferases
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Analysis of the distance between methylcytosines in 50 nucleotides regions
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Supplementary Flgure 2 | Spacing of Adjacent Methylcytosines In Different Contexts.
Prevalence of mCHG/MGHH sites (y-axis) as a function of the number of bases between
adjacent mCHG/MCHH sites (x-axis) based on all non redundant pair-wise distances up to 50
nt in exons, introns and random sequences. The blue line represents smoothing by cubic
splines.

Exons:
No periodicity

Introns and random:

* no periodicity for mCG

* two pairs of 8-base
separated mCHG sites spaced
with 13 bases between them
* periodicity of 8-10 bases for
mCHH

8-10 base periodicity
corresponding to a single
turn of the DNA helix; this
is important for DNMT3A -

3L heterotetramer "




Depleted DNA methylation at DNA-protein interaction sites
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ChIP-Seq detects location of enhancers (regions of simultaneous enrichment of H3K4me1l
and H3K27ac) throughout the H1 and IMR90 genomes
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Supplementary Flgure 11 | Correlatlon of DNA Methylatlon Between IMR20 and H1 at ecrease ol corre ation
Different Genomlc Features. The Pearson correlation coefficient of mCG methylation q HP
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the length of the introns. Abbreviations: CGI, CG islands. mGC, methylcytosine. TSS, transcrip-

tional start site.
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Comparison of transcripts between H1 and IMR90

* 42% of the genes more expressed in H1 (3X
IMR90) are located within PMDs

* 13% of the genes more expressed in IMR90 are
located in PMDs

Inspection of 5,644 genes with a
TSS located in or within 10 kb of
a PMD

e they are less expressed in
IMRO0

Figure 5 | Call-type variation in DMA methylation.
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Supplementary Flgure 13 | Transcriptional Actlvity and Eplgenetlc Modiflcations at
Partlally Methylated Domalns. The density of strand-specific mRMA reads, and the
presence of domains of H3K4me3, H3k36me3 and H3K2/me3 in H1 and IMR30 was profiled
20 kb upstream to 20 kb downstream of each gene located in an IMA20 PMD. Open triangles
indicate the central point in sach 40 kb window. Also displayed is the presence within the
Human reference sequence of gensas on sach strand, where pink coloring indicates the gene
body and dark red boxes represent exons. The complets linkage hierarchical clustering of the
regions based on these data is presented. Abbreviations: mG, methyleytosing. PMD, partially

methylated domain.

IMR90 PMD
genes show
lower mRNA
abundance,
lower levels of
H3K4me3 and
H3K36me3
modifications;
they show
higher proximal
H3K27me3 levels

(see slide 22)



ATy In IMR90 cells there is a
positive correlation
between mCG
methylation level and
gene expression;

in H1 no correlation is
discernible
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Figuwre 5 | Call-type variation in DMNA methylaton.

in HI1, IME30 o not i flerent ially expressed | respectively. d, Mean gene
by 1l G meethy lation (2t least 10 resds required) as a function of the gene
expresion mnk, 1 being the most expressed. mC, methyloytosine; PMD,
parially methylated domain RPEM, reads per lilobase of tmnscript per
millisn reads

The positive correlation between gene
expression and and gene body
methylation could be re-interpreted as
a depletion of methylation in
repressed genes in differentiated cells
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Supplementary Flgure 14 | Differentlally Methylated Reglons proximal to DNMT3B.
Annod genome browser display of DNA methylation and mRNA at two DMRs upstream of
DNMT3B. For DNA methylation tracks, vertical lines above and below the dotted central line
indicate the presence of methylcytosines on the Watson and Crick strands, respectively. The
color represents the context of DNA methylation, as indicated, and the vertical height of the
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line indicates the methylation level of each methylcytosine. The IMRS0 > H1 mC track
indicates methylcytosines that are significantly more methylated in IMRS0 relative to H1 ata & E5F S EEIES
5% FDR (Fisher's Exact Test), and the color represents the context of DNA methylation. ik AR E
Abbreviations: mC, methylcytosine. DMR, differentially methylated region. E 12 °: &
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DMRs: differentially methylated regions
* IMR90 are highly methylated than H1
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491 DMRs are associated with 139 and 113
genes more highly expressed in H1 and IMR90
>50% of these genes with DMRs located within 2
kb upstream of the TSS or the 5’-UTR Sippmeny T 181 Senes W 20 10 f S0 ypermennyied e

indicated in red. Side colorbar displays normalized differential expression (red and blue for
genes upregulated in H1 and IMR30, respectively). 26



Genomic features density in a 20 kb up- and downstream window for each DMR
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Genomic features density in a 20 kb up- and downstream window for each HERV

HERVs: human
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Supplementary Flgure 16 | Clustering of Genomle, Eplgenetic and Transcriptional
Features at Differentlally Methylated HERVs. The density of DNA methylation, smBRNA
reads, strand-specific mBMA reads, and the presence of domains of H3K4me3, H3k36me3
and H3K27me3 in H1 and IMR90 was profiled 20 kb upstream to 20 kb downstream of each
of the 61 smRNA clusters that co-localize with DMRs. Abbreviations: DMRs, Differentially
Methylated Regions. HERVs, Human Endogenous Retroviruses.

* less methylated in
H1

* high
transcriptional
activity in H1

These small RNAs, like in plants, could be involved in accurate targeting of DNA methylation

28



Concluding remarks

There are extensive differences between the DNA
methylomes of the two human cell types

There is abundant methylation in the non-CG context

Different roles can be suggested by profiling of
enhancers and different patterning of CG and non-CG
methylation

Non-CG may have a key role in the origin and
maintenance of pluripotency

Future studies will explore methylation variations
throughout differentiation and re-establishment in
induced pluripotent states
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