
Since the rediscovery of Gregor Mendel’s findings in the 
early twentieth century we have known that the observ-
able traits of an organism are largely controlled by inher-
ited functional units. In the years that have followed, 
much effort and progress have been made in genetics 
and functional genomics to understand the molecular 
basis of inheritance and how it translates into a particu-
lar phenotype. However, the simple hope that genomes 
can be viewed as blueprints from which phenotypes can 
be inferred has not been fulfilled.

The term phenotype is generally used to describe the 
observable traits of an organism (for example, morphol-
ogy, size, physiology and behaviour) that emerge from 
its genotype and the specific environmental conditions. 
As the sensitivity of cell biological and biochemical 
methods has increased, the term has been extended to 
various aspects of cellular and molecular organization. 
Although phenotypic manifestations at the different 
scales of biological complexity are interconnected, it is 
conceivable that genetic mutations introduce perturba-
tions in complex molecular systems, and phenotypes 
emerge at a higher level of biological organization from 
this perturbed molecular state.

Given the complexity of cellular systems, tech-
niques have been developed over the years that allow 
the comprehensive analysis of molecular components. 
The most progress has been made in obtaining infor-
mation on metabolites and mRNA at the systems 

level. Unfortunately, the global analysis of proteins was  
exceedingly difficult in the past. However, systematic 
information on proteins is crucial as first, proteins can 
interact with all of the other classes of molecular compo-
nents, including other proteins, and second, most of the 
genes for which phenotypes have been described encode 
proteins. Mutations can affect proteins at various levels, 
including their abundance, their pattern of posttrans-
lational modifications (PTMs) and their propensity to 
transiently or stably interact with other components in 
the cell. Changes in protein properties are not confined 
to the mutated protein itself as, in many cases, mutations 
elicit indirect responses that also affect the properties of 
other proteins.

The classical biochemical analysis of proteins has 
been a daunting and time-consuming task in the past, 
and has yielded incomplete data sets that provided little 
quantitative information. In addition, changes in pro-
tein abundance cannot be simply inferred from DNA 
microarray data as mRNA abundance poorly correlates 
with protein abundance1,2. Recently, and partly as a con-
sequence of the advances in genome sequencing, enor-
mous progress has been achieved in mass spectrometry  
(MS)-based proteomics. Despite limited proteome 
coverage in most existing studies, this is the only cur-
rently available method to systematically characterize 
molecular alterations at the protein level. For the first 
time, MS-based proteomics allows the identification and 
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Mass spectrometry 
An analytical technique for the 
identification of the chemical 
composition of compounds on 
the basis of the mass to charge 
ratios of charged particles.

Applying mass spectrometry-based 
proteomics to genetics, genomics  
and network biology
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Abstract | The systematic and quantitative molecular analysis of mutant organisms that has 
been pioneered by studies on mutant metabolomes and transcriptomes holds great 
promise for improving our understanding of how phenotypes emerge. Unfortunately, 
owing to the limitations of classical biochemical analysis, proteins have previously been 
excluded from such studies. Here we review how technical advances in mass 
spectrometry-based proteomics can be applied to measure changes in protein abundance, 
posttranslational modifications and protein–protein interactions in mutants at the scale of 
the proteome. We finally discuss examples that integrate proteomics data with genomic 
and phenomic information to build network-centred models, which provide a promising 
route for understanding how phenotypes emerge.
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Affinity purification–mass 
spectrometry
A method for the analysis  
of protein complexes that 
combines purification of 
protein complexes using 
affinity reagents and mass 
spectrometry. 

Tandem mass spectrometry 
This combines two mass 
spectrometers: one (MS1) for 
the detection and selection  
of precursor ions, which is 
followed by a second (MS2)  
for the analysis of fragment  
ion spectra generated from 
selected precursor ions  
after collision-induced 
fragmentation. The information 
from the fragment ion spectra 
is used for peptide 
identification.

Dynamic range
The ratios between the highest 
and lowest possible ion 
intensities in a mass spectrum 
for which accurate masses  
can be determined by a  
mass spectrometer.

quantitative profiling of organismal proteomes and the 
systematic analysis of protein modifications and interac-
tions, offering a new range of opportunities for geneti-
cists and network biologists to improve existing models 
of how phenotypes emerge.

In this Review we will discuss the gap between geno-
types and phenotypes in light of the recent advances in 
MS-based proteomics. we will introduce the basic ana-
lytical concepts of MS-based protein identification and 
quantification that are used for mutant proteome pro-
filing. examples from existing studies will be presented 
that show how mutant proteome profiling in many spe-
cies, including Mus musculus, Caenorhabditis elegans 
and Saccharomyces cerevisiae, has provided important 
insights into the inheritance of protein abundance, as 
well as the use of this technique for the identification 
of new disease biomarkers. we will present recent tech-
niques for the global profiling of PTMs of proteins and 
discuss how they can be used to infer candidate path-
ways that are implicated in the emergence of phenotypes. 
Mutations might affect functionally important interac-
tions between proteins, and we will explain how they can 
be measured using affinity purification–mass spectrometry 
(AP–MS). Finally, we will conclude with a discussion of 
the integration of annotated MS-based proteomics data 
with genomic and phenomic information as a promis-
ing framework for inferring the molecular networks that 
underlie the emergence of phenotypes.

Protein identification by MS shotgun proteomics
MS-based protein identification provides useful infor-
mation on the relationship between the genome and the 
proteome and is the basis for profiling mutant proteomes 
using quantitative MS. To date, the most widely used 
method for protein identification is referred to as MS 
shotgun proteomics. Analagous to the shotgun sequenc-
ing approach in genomics, this term describes a method 
for systematic protein identification from complex sam-
ples using a combination of liquid chromatography (lC) 
separation of  peptides generated by trypsin digestion and 
their subsequent analysis by tandem mass spectrometry 
(MS/MS)3. The basic concept of protein identification 
by MS shotgun proteomics is explained in FIG. 1.

Ideally, proteome profiling should allow us to identify  
and quantify all of the protein components in a cell. 
How many proteins can we detect in a typical shotgun 
MS experiment? Despite much progress, the compre-
hensive characterization of complex protein samples is 
still a major challenge and requires extensive resources 
in terms of time, sample amounts and instrumentation. 
Two major factors challenge comprehensive protein 
identification by shotgun MS: the complexity of cellu-
lar proteomes and the high dynamic range at which pro-
teins are expressed in biological samples. It is estimated 
that in human cells, approximately 100,000 different 
protein isoforms are likely to be expressed from the 
20,325 annotated protein-coding genes (see Further 
Information for a link to the UniProt website). After 
digestion using trypsin, these proteins produce highly 
complex peptide mixtures. The concentrations of pro-
teins can vary over more than four orders of magni-
tude in yeast4 to an estimated ten orders of magnitude 
for human body fluids, including serum5. However, 
the dynamic range of detection in an MS instrument 
typically ranges between 1,000–10,000. This leads 
primarily to the redundant identification of highly 
abundant proteins and often precludes the identifica-
tion of protein species that have a low abundance from  
complex samples.

Despite these limitations, recent instrumental 
advances combined with advances in fractionation 
techniques have been used for the comprehensive 
proteomic analysis of several genetic model organ-
isms, including S. cerevisiae, Drosophila melanogaster, 
C. elegans and Arabidopsis thaliana1,6–8. The coverage 
achieved in these studies typically ranges between 50% 
and 80% of the proteins encoded by the genome. by 
combining diverse biological samples that represent 
different developmental stages, activity states and 
organs, and by using multidimensional biochemical 
fractionation, one such study identified 9,124 proteins 
from D. melanogaster, which corresponds to 63% of 
the predicted oRFs8. Data from this study and others 
confirmed existing gene models or suggested alterna-
tive gene models. These data also revealed the exist-
ence of novel protein-coding genes that had not been 

Figure 1 | Mass spectrometry-based protein identification. Protein samples are digested with trypsin and the 
resulting peptide mixtures are fractionated by reversed-phase liquid chromatography (LC). The fractionated peptide 
solution is subjected to an electric potential, which causes a spray to be formed, leading to the desolvation and ionization 
of the peptides (electrospray ionization; ESI). Mass to charge (m/z) ratios are measured from peptide ions that pass the 
collision cell without fragmentation in the mass spectrometer (MS). Specific ions are randomly selected for collision- 
induced dissociation (CID) with neutral gas molecules (for example, helium) and the resulting fragment ions are measured 
in the second mass analyser in tandem mass spectrometry (MS/MS). The MS precursor ion intensities obtained in the first 
stage can be used for peptide quantification, whereas MS/MS fragment ion information from the second stage contains 
sequence information that can be compared with sequences from in silico digested protein sequence databases for 
peptide and subsequent protein identification.
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Liquid chromatography–
tandem mass spectrometry
Liquid chromatography is  
used in MS-based proteomics 
to separate peptides in 
complex mixtures primarily  
on the basis of their charge  
or hydrophobicity using  
strong cation exchange  
or reversed-phase 
chromatography columns.

identified by gene prediction algorithms and provided 
evidence for the expression of specific splice isoforms 
at the protein level6–8.

Quantitative MS
The comparative analysis of molecular phenotypes 
depends on quantitative MS technologies to detect the 
relative and absolute protein abundance changes that 
result from genetic perturbations. Two main approaches 
are currently being used for MS-based quantitative pro-
teomics: differential isotopic labelling and label-free 
quantification (BOX 1). The two approaches have differ-
ent advantages, isotope-labelling methods are thought 
to measure protein abundance with higher accuracy, 
whereas label-free approaches have a greater dynamic 
range and achieve higher levels of proteome coverage9.

Differential isotope labelling. MS quantification on the 
basis of differential isotopic labelling of peptides and 
proteins builds on the theory of stable isotope dilu-
tion. This theory states that the relative signal intensity 
obtained in a mass spectrometer of two analytes that are 
chemically identical but have different stable isotope 
composition represents the relative abundance of the 
two analytes in the sample. Protein abundance in wild-
type and mutant samples (or for any other condition) 
can be analysed in a single liquid chromatography–tandem 
mass spectrometry (lC–MS/MS) experiment on the basis 
of observable mass shifts caused by differential isotope 
labelling. Two principal workflows are typically applied: 
in vitro labelling of isolated proteins and peptides  
or in vivo incorporation of isotope-labelled amino acids 
through metabolic labelling, which is also referred to as 
stable isotope labelling with amino acids in cell culture 
(SIlAC; for details see BOX 1).

Label-free quantification. label-free quantitative MS 
methods are based either on spectral counting or on pep-
tide precursor ion intensities that are obtained using the 
first mass spectrometer (MS1) of a tandem mass spec-
trometer. Spectral counting was introduced as a semi-
quantitative method for the analysis of shotgun MS data 
at a moderate mass resolution for which alternative non-
isotopic quantification methods are not applicable10–12. 
This method is based on the assumption that the rate at 
which a peptide precursor ion is selected for fragmenta-
tion in a mass spectrometer is correlated to its abundance. 
For relative protein quantification, the spectral counts 
are then averaged into a protein abundance index. The 
method depends on the quality of the MS/MS peptide 
identification and therefore problems for protein quan-
tification might arise if specific, correctly identified pep-
tides map to more than one protein. Although the method 
works reliably for large and abundant proteins, the  
number of peptides observed from small proteins and 
low abundance proteins is often insufficient for accurate 
quantification by spectral counting.

MS-based label-free quantification is based on the 
accurate mass and time tag approach13 and builds on 
the alignment of high-mass accuracy spectra that are 
obtained from the analysis of wild-type and mutant 

samples by separate lC–MS/MS experiments (BOX 1). 
Peptides are identified across different lC runs based 
on their specific retention time coordinates and precise 
mass to charge (m/z) values, which in principle allows 
the quantification of all of the peptides detected from a 
biological sample that are within the sensitivity range of 
a MS analyser, independent of MS/MS acquisition.

Analysis of global proteome changes
Genetic mutations can affect the structure and the abun-
dance of proteins. Importantly, mutations can also have 
indirect systemic effects on the abundance of other cell-
ular proteins. Abundance profiling of mutant proteomes 
by MS might therefore provide important information 
for the identification of processes and pathways that are 
involved in establishing mutant phenotypes. It is still 
early days for these types of studies, as substantial exper-
imental efforts are required and the proteome coverage 
has been far from complete in most of the studies that 
have been carried out. Nevertheless, the results so far are 
encouraging and show that MS-based proteomics can 
provide information on the molecular phenotype that 
is not accessible using other methods. Applications of  
published studies include assessing the genetic basis  
of protein abundance, elucidating the effects of specific 
mutants and biomarker discovery. TABLE 1 summarizes 
recent studies that have carried out global MS-based 
profiling of mutant proteomes.

The genetic basis of protein abundance. To study the 
inheritance of protein abundance the proteomes of two 
distinct parental strains of S. cerevisiae and 98 segregants 
were compared using label-free quantification14. The 
results showed that protein abundances, as for mRNA 
abundances, represent quantitative traits, and that vari-
ation in protein abundance among segregants is prima-
rily due to their genetic differences. The Mann group 
recently compared proteomes from haploid and diploid 
strains of S. cerevisiae using a SIlAC approach1. These 
authors quantified  >4,000 yeast proteins, showing for the 
first time that, in principle, almost complete proteome 
coverage can  be reached by MS-based quantitative pro-
teome profiling if substantial efforts are made during 
sample fractionation and MS analysis. Notably, only 
196 proteins showed significant changes in abundance 
between haploid and diploid yeast proteomes. Among 
the group of haploid-specific proteins, the authors found 
key components of the pheromone signalling pathway 
(Ste2, Ste4, Ste18, Gpa1, Ste5, Fus3 and Ste12) that are 
required for the mating  of haploid cells. 

Proteomic profiling of mutants. Proteomic profiling of  
mutants has been used to identify new components 
of molecular pathways and to shed light on the proc-
esses that contribute to the generation of a phenotype. 
In an attempt to identify new targets of the insulin sig-
nalling pathway, John Yates’ group analysed the global 
protein profiles from C. elegans mutants of the insulin-
like growth factor 1 receptor gene daf‑2 (REF. 15). Using 
samples derived from 15N-labelled wild-type worms as 
a reference, 86 proteins were shown to be upregulated 
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Box 1 | Mutant proteome profiling by quantitative mass spectrometry

isotope-labelling approaches
As shown in part a in the figure, differential labelling of 
proteins or peptides with heavy or light isotopes (indicated 
in red or blue) can be done in vitro or by the incorporation of 
isotope-labelled amino acids by metabolic labelling in vivo. 
For in vitro labelling, wild-type (wt) and mutant (mut) 
samples are prepared separately and isolated proteins or 
peptides are differentially labelled with heavy or light 
versions of isotope-tagging reagents, mainly through their 
sulphhydryl (for example, isotope-coded affinity tags)71 or 
amine groups (for example, isotope-coded protein labels)73. 
Differential labelling introduces a characteristic mass shift, 
which can be used to determine the MS1 peptide ratios 
between pairs of heavy and light peptides. Peptide labelling 
with recently introduced isobaric tags for relative and 
absolute quantitation, which as the name indicates, keep 
the mass of the differentially labelled precursor ions of a 
given peptide constant but allow quantification after 
tandem mass spectrometry (MS/MS) analysis on the basis of 
sample-specific reporter ion intensities from up to eight 
different samples in a single liquid chromatography– 
tandem mass spectrometry (LC–MS/MS) experiment74,75.

The use of synthetic isotope-labelled reference peptides 
for absolute quantification that was pioneered by Desiderio 
et al.76 has been extended to proteomic studies by Steve 
Gygi and colleagues77. In this approach, known amounts of 
synthetic isotope-labelled reference peptides, which 
correspond to proteotypic peptides of the proteins to be 
analysed, are added to the samples before LC–MS/MS 
analysis for absolute quantification of proteins.

Stable isotope labelling with amino acids in cell culture  
is an in vivo isotope labelling method that is becoming 
increasingly popular78.  Wild-type and mutant cells are 
grown in media that contains either light or heavy isotope 
versions of lysine or arginine, which yield differentially 
labelled proteomes. The entire labelling process occurs  
at the beginning of the experiment, which has the 
advantage that samples can be combined at early steps  
to avoid errors that can be introduced when samples are 
separately processed. As the method is limited to cells  
or organisms that can be metabolically labelled, it is not 
generally applicable to human tissues and body fluids.

Label-free quantification from aligned Ms1 spectra
For label-free quantification (part b in the figure) wild-type 
and mutant proteomes are analysed by separate LC–MS/MS 
experiments and the MS1 spectra are computationally 
aligned to calculate the relative protein abundance changes 
on the basis of the signal intensities of extracted ion 
chromatograms from aligned peptide features. This reduces 
the undersampling problem that is known to occur with  
MS/MS-based approaches and results in a dynamic range  
of three to four orders of magnitude79. Newer hybrid MS 
instruments (LTQ FT and LTQ Orbitrap) offer the option to 
simultaneously record MS signal intensities and identify 
peptides using MS/MS. These two types of information  
can be combined by recently developed computational 
approaches80–82. The number of peptides that can be mapped 
across different LC–MS/MS experiments therefore depends 
on the accuracy of the peptide masses that are determined 
by the mass analyser and reproducibility of the LC system. 
Strategies for signal normalization and for correcting 
variations in LC performances have been developed and  
are now integrated in automated computational platforms 
for label-free MS analysis83.
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Selected reaction 
monitoring
This is a sensitive mass 
spectrometry-based method 
for targeted proteomics that is 
based on the measurement of 
precursor–fragment ion pairs 
(transitions) of proteotypic 
peptides.

or downregulated in daf‑2 mutants. Changes in protein  
abundance were confirmed by targeted proteomics 
using selected reaction monitoring (SRM). The subsequent 
genetic analysis of a subset of these proteins showed that 
they had specific roles in DAF-2-dependent processes, 
such as dauer formation and aging. In another study, 
global proteome analysis following the ionizing irradia-
tion of thymocytes isolated from wild-type and Tp53K317R 
knock-in mice indicated that  lysine 317 acetylation has a 
role in the modulation of the p53-mediated DNA dam-
age response16. other studies have analysed tissues and 
cells from mutant mouse models of human diseases, 
such as Alzheimer’s disease17, Huntington’s disease18 
and  fragile X syndrome19, and have identified mutant- 
specific proteomic changes that can be subjected to  
further functional analysis.

The metabolic labelling of entire mammalian organ-
isms offers an alternative approach to the quantitative 
analysis of mutant proteomes20–22. In a recent study by 
the Mann group, mice were fed with a 13C6 lysine diet, 
which led to almost 100% incorporation of the isotope-
labelled amino acid into the mouse proteome20. Similar 
to the SIlAC experiments described above, isotope-
labelled proteomes isolated from wild-type and mutant 
mouse tissue can be compared using whole-proteome 
profiling to detect differences in the abundance of 
specific proteins. The feasibility of the approach has 
been confirmed by proteomic profiling of mice that 
are deficient for β1-integrin 3, β-parvin 3 and kind-
lin 3, by analysing platelets, heart tissue and red blood 
cells, respectively. In the case of the kindlin3-deficient 
mice (Fermt3–/–), this approach showed that several 
proteins (ankyrin 1, band 4.1, adducin 2 and dematin) 
were almost completely absent in Fermt3–/–erythrocyte 
membranes, which together with additional functional 
and morphological data provide an explanation for the 
anaemia phenotype that has been observed in newborn 
Fermt3–/– mice.

Mutant proteome profiling for biomarker discovery. 
In search of early disease biomarkers, some stud-
ies have focused on changes in protein abundance in 
serum proteomes from mice that carry disease-causing 
mutations that are frequently found in human disor-
ders23–25. In one such study, the Hanash group com-
pared serum proteomes from healthy control mice 
and Pdx1-CreKrasG12DInk4a/Arf lox/lox mutant mice that 
develop pancreatic intraepithelial neoplasia and ductal 
adenocarcinomas . Protein profiling was carried out 
by multistep fractionation and labelling of cysteine- 
containing peptides with 13C isotope-labelled acry-
lamide24. Among the 1,442 identified proteins, 621 
could be quantified and 165 proteins were upregulated 
in cancer serum samples compared with samples from 
control individuals. Subsequent elISA (enzyme-linked 
immunosorbent assay) analysis identified similar 
changes in protein abundance among the correspond-
ing human orthologous proteins, which provided addi-
tional support that they were of interest as biomarker 
candidates for early-stage disease profiling in patients 
with pancreatic cancer. Similar approaches for biomar-
ker discovery are likely to identify biomarkers for other 
disease phenotypes.

Phenotypic profiling using targeted MS
So far, changes in mutant proteomes have been ana-
lysed using shotgun lC–MS/MS technologies, which 
are biased towards the discovery of the most abundant 
and easily observable proteomic changes. However, bio-
logically relevant molecular responses are often below 
the detection limits of shotgun MS-based proteomics. 
More recently, targeted proteomics workflows have 
been introduced to overcome these shortcomings of 
shotgun MS proteomics26–28. Targeted proteomics allow 
the selective detection and quantification of predeter-
mined peptide ions, which are analogous to mRNA 
profiling using DNA microarrays (FIG. 2).

Table 1 | Examples of global profiling of mutant proteomes using quantitative mass spectrometry

Organism Genetic model Method Refs

Yeast Parental versus segregants Label free 14

Yeast Haploid versus diploid SILAC 1

Fly  RNAi-mediated knockdown of ISWI SILAC 69

Worm daf-2–/– 15N metabolic labelling 15

Mouse Pdx1-CreKrasG12D Ink4a/Arf lox/lox 13C acrylamide labelling 24

Mouse Camk2a –/– iTRAQ 70

Mouse Fermt3 –/– SILAC 20

Mouse Tp53K317R ICAT 16

Mouse Huntington’s disease ICAT 18

Mouse Fmr1 –/– SILAC 19

Mouse Triple transgenic (PS1M146V; APPSwe; MAPTP301L) Alzheimer’s model iTRAQ 17

Rat Rat1/Myc ICAT 71

APP, amyloid precursor protein; Camk2a, calcium/calmodulin-dependent protein kinase IIα; daf-2, abnormal dauer formation 2; 
Fermt3, fermitin family homolog 3 (also known as kindlin 3); Fmr1, fragile X mental retardation 1; ICAT, isotope-coded affinity tag; 
iTRAQ, isobaric tag for relative and absolute quantitation; MAPT, microtubule-associated protein tau; Pdx1, pancreatic and 
duodenal homeobox 1; PS1, presenilin 1; SILAC, stable isotope labelling with amino acids in cell culture.
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can be observed by mass 
spectrometry and uniquely 
identify a specific protein or a 
specific isoform of a protein.

To tailor targeted MS experiments towards a specific 
biological question (for example, how is a known signal-
ling pathway affected in the mutant phenotype?), the 
increasing amounts of information on pathways, protein 
interactions, gene expression changes and gene ontolo-
gies can be accessed using public databases to establish 
a list of target proteins. Next, proteotypic peptides for 
the chosen target proteins can be selected using either 
software tools to predict their sequences29 or accessed 
from existing MS data depositories, which can also 
provide the corresponding m/z values and chromato-
graphic retention times of these peptides30,31. The sub-
sequent identification and quantification of proteotypic 
peptides are based on precursor and fragment ion m/z 
ratios (which are also referred to as transitions) that 
are highly specific for a particular peptide. The whole 
process is referred to as SRM or multiple reaction 
monitoring (MRM) (FIG. 2). A variant of this approach 
that is referred to as scheduled SRM allows the quan-
titative analysis of several hundred proteins in a single  
MS experiment28,32.

In summary, the process of targeted MS analysis 
can be viewed as a western blot using a mass spec-
trometer, which in principle allows the detection and 
quantification of all of the proteins for which informa-
tion on observable proteotypic peptides is available. 
Targeted MS is currently the most sensitive MS detec-
tion method and allows the detection of yeast pro-
teins that are present at <50 copies per cell from total 
yeast lysate or of proteins with <10 copies per cell after 
2-dimensional peptide fractionation31,33. In combina-
tion with isotope-labelled reference peptides, absolute 
quantitative information on protein abundance can be 
obtained with high sensitivity. However, the increase in 
sensitivity and reproducibility of targeted MS analysis 
comes at a cost: SRM analysis is currently limited to a 
few hundred peptides that can be analysed in a single 
SRM experiment and requires careful assay optimiza-
tion and validation. However, the substantial increase 
in sensitivity, accuracy and reproducibility that has been 
shown by recent SRM studies31,34–36 sets the stage for  

hypothesis-driven protein profiling of mutant proteomes 
with an unprecedented sensitivity in the near future.

Analysis of posttranslational changes in mutants
Covalent modifications of proteins (for example, phos-
phorylation, acetylation, methylation, glycosylation, 
ubiquitin and ubiqutin-like modification) play impor-
tant parts in the control of cellular functions. Depending 
on the cellular state, cell type and environmental condi-
tion these modifications control the activity, localization 
and stability of proteins and their interactions with other 
macromolecules. Functional genomics cannot provide 
experimental evidence for protein modifications other 
than protein sequence information for the in silico pre-
diction of candidate sites of modification. over 200 dif-
ferent PTMs have been described for proteins37 and the 
list is still increasing.

Several sensitive techniques for the global and targeted 
analysis of PTMs of proteins by MS have been introduced 
(for detailed reviews, see REFS 38,39). Protein modifica-
tions cause distinct changes in peptide mass, which can be 
measured in a mass spectrometer. For example, phospho-
rylation of a tyrosine-containing peptide or its acetyla-
tion on lysine causes a discrete mass increase of 80 Da or 
42 Da, respectively, which can be detected in precursor 
and fragment ion spectra. Tryptic cleavage of ubiquiti-
nylated proteins results in a glycine–glycine modification 
with a corresponding mass increase of 114 Da. The frag-
mentation of a modified peptide can also release modifi-
cation-specific neutral-loss ions, which are detectable in 
MS/MS spectra. For example, phosphoserine-containing 
peptides lose phosphoric acid after collision-induced dis-
sociation fragmentation, which causes a characteristic 
neutral-loss peak of 98 Da in the corresponding MS/MS  
spectrum. Computer programmes are continuously 
improved for the systematic scanning and annotation of 
PTMs from MS and MS/MS data.

The analysis of PTMs by MS is particularly challenging  
as often only a small fraction of proteins harbours a 
specific modification. This problem has been addressed 
by the specific enrichment of modified proteins and 

Figure 2 | targeted proteomics. Targeted protein identification can be achieved by selected reaction monitoring 
using triple quadrupole instruments. Peptide mixtures are fractionated and ionized by electrospray ionization (ESI)  
and liquid chromatography (LC). The mass spectrometer can be programmed with a list of target proteotypic peptides. 
A specific peptide ion will be selected in the first quadrupole (Q1). A second mass filter in the third quadrupole (Q3) 
allows filtering of the corresponding fragment ions following collision-induced dissociation (CID) in the second 
quadrupole (Q2). The resulting precursor fragment ion pairs (transitions) are highly specific for a given proteotypic 
peptide and are therefore unique for a given protein in the analysed proteome. By including isotope-labelled versions 
of the proteotypic peptides that are being analysed, it is possible to simultaneously determine the absolute amounts of 
the protein. The approximate retention time (RT) information can be used to restrict the time for the detection of a 
specific transition and therefore allows the detection of multiple peptide ions in one measurement, a process that is 
referred to as scheduled selected reaction monitoring.
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Tissue or cultured cells (wild type or mutant)peptides to increase the dynamic range and sensitivity 
in PTM analysis by MS. Some PTMs can be enriched 
by derivatization of protein modifications to make them 
accessible to chemical solid-phase capture techniques, 
and other PTMs can be purified using, for example, metal 
affinity chromatography (such as titanium dioxide or  
immobilized metal affinity chromatography; IMAC) 
or antibodies that are specific for a given modification. 
Despite their potential, only a few studies have used 
these techniques to systematically study PTMs in mutant 
proteomes. Here, we describe global phosphoproteome 
analysis in more detail, as the most substantial progress 
has been achieved in this area.

Protein phosphorylation plays a central part in the 
regulation of almost all eukaryotic cellular processes. Data 
on the phosphorylation status of a cellular proteome are  
therefore informative as they suggest which proteins  
are regulated and what signalling networks might be 
activated in a given mutant phenotype. The size of the 
human phosphoproteome is unknown but it can be 
estimated from the >50,000 known sites, which map to 
>8,000 proteins present in public databases (see Further 
Information for a link to the PhosphoSitePlus website), 
that >100,000 phosphorylated sites may exist in the 
human proteome. The complexity of organismal phos-
phoproteomes and the problem of the dynamic range 
that is associated with the temporal dynamics of protein 
phosphorylation make global phosphoproteome analysis 
impractical for classical biochemical workflows.

This situation changed when phosphopeptide- 
enrichment techniques were developed and com-
bined with quantitative MS. These combined methods 
now allow the global identification and quantification 
of thousands of phosphorylation sites40,41. All of the 
approaches for global analysis of phosphoproteins com-
bine steps for the enrichment of phosphorylated proteins 
or peptides and strategies to reduce the sample complex-
ity before MS (FIG. 3). Additional strategies that build 
on the improved accuracy of modern MS instruments 
and alternative methods for the fragmentation of phos-
phopeptides (for example, electron transfer dissociation) 
are available to further improve the accuracy and sensi-
tivity of phophopeptide identification by lC–MS. Several 
studies recently showed that thousands of new protein 
phosphorylation sites could be identified from low sam-
ple amounts42,43, and these studies provide fascinating 
new opportunities for also studying phosphoproteome  
changes in mutant cells.

In one of the few studies that have applied MS-based 
phosphoproteomics to the analysis of mutant organisms, 
the roles of the PI3K-related Mec1 and Tel1 kinases in 
DNA damage checkpoint control have been analysed 
in yeast44. DNA damage was induced in wild-type and 
mec1 and tel1 mutant yeast strains and differential phos-
phorylation was analysed after IMAC phosphopeptide 
enrichment using differential isotope peptide label-
ling and quantitative lC–MS analysis. The authors 
found that 62 out of the 2,689 phosphosites identified 
were specifically affected in the kinase-mutant strains. 
Follow-up experiments using in vitro kinase assays indi-
cated a panel of new in vivo kinase substrates, including 

proteins such as Rad9 and Rad17, which are linked to 
the DNA damage checkpoint pathway. Yeast offers the 
unique possibility to profile all kinase- and phosphatase-
deletion mutants. It is expected that similar studies in 
yeast and other genetic systems will provide important 
new insights into functional kinase and phosphatase 
substrate networks. The approach is not limited to the 
analysis of mutated kinase and phosphatase genes as 
protein phosphorylation can be regarded as a sensi-
tive indicator for the pathways that are engaged in the  
cellular responses that follow a genetic perturbation.

Global profiling of mutant PTMs by MS is still in its 
infancy as techniques for the analysis of PTMs have just 
been developed. So far, phosphoproteome profiling is 
the only method that has been successfully applied to 
genetic mutants. extending such analyses to other PTMs 
promises to provide new opportunities for the molecu-
lar analysis of mutants. because many PTMs are highly 
regulated by cell signalling, future studies also need to 
provide kinetic information about global PTM changes 
in mutants using quantitative MS approaches.

Figure 3 | strategies for global phosphoproteome 
profiling of mutant proteomes. Proteins purified from 
mutant and wild-type control cells are processed using 
the methods indicated. Several methods to reduce sample 
complexity (orange boxes), including one-dimensional 
polyacrylamide gel electrophoresis (PAGE) and free-flow 
electrophoresis (FFE), are used at different steps, in 
combination with phosphopeptide-enrichment 
techniques (red boxes; titanium dioxide (TiO2) spheres, 
immobilized metal affinity chromatography (IMAC) and 
phosphoramidate chemistry (PAC)) to improve the overall 
proteome coverage. These approaches are typically 
combined with quantitative mass spectrometry (MS) 
workflows for measuring the relative and absolute 
changes in mutant phosphoproteomes. IP, immunoprecipi-
tation; LC–MS/MS, liquid chromatography–tandem mass 
spectrometry; P, phosphorylation site. 
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Analysis of altered protein interactions
Almost all proteins function in the context of specific 
interactions with other proteins. Published interaction 
data from systematic protein interaction studies and 
classical biochemical analysis can be accessed using 

public databases. Unfortunately, the existing databases 
often lack important information about which cellular 
conditions the respective interactions were observed 
under and are incomplete and almost non-existent for 
mutant proteins in higher eukaryotes.

During the past few years, many AP–MS workflows 
have been introduced that allow the efficient and sensi-
tive detection of protein-binding partners45,46. Protein 
complexes are purified either using antibodies that 
recognize the endogenously expressed protein (or its 
mutant form) or using an affinity tag that is fused to 
the protein of interest, and are subsequently analysed 
by MS-based proteomics as described above. In cases 
in which a mutation maps to a protein of unknown 
function, AP–MS/MS can provide valuable biochemi-
cal insights based on the known functions of the bind-
ing partners identified. Mutations have been found 
that disrupt or increase protein–protein interactions, 
which can have profound effects on the control of a 
range of cellular processes. Not surprisingly, such 
mutations are not uncommon in the 2,000 genes that 
have known mutations in human diseases47. Recently, 
several experimental strategies have been introduced 
that combine affinity purification with quantitative MS 
to measure relative48 and absolute49 changes in protein 
interactions, which will facilitate the analysis of mutant 
proteins (FIG. 4a).

Using AP-MS, many human tumour suppressor gene 
or oncogene products have been linked to known signal-
ling pathways and their roles in oncogenesis have been 
elucidated on the basis of altered protein interaction 
data. For example, a recent AP–MS study showed that 
the wilms’ tumour suppressor protein, wTX, is part of 
a complex that contains β-catenin, axin 1, β-transducin 
repeat-containing protein 2 (β-TRCP2) and adenoma-
tous polyposis coli (APC), in which it seems to control 
tumour growth through the degradation of β-catenin50, 
suggesting a model for tumour suppression by wTX 
through the β-catenin pathway.

Mutations often have pleiotropic effects, which are 
hard to understand if proteins are considered as having 
only one function. An increasing number of proteins 
have been shown to play multiple parts in cellular regula-
tion51. There is an increasing amount of AP–MS/MS data 
to suggest that proteins, such as the well-studied protein 
serine/threonine phosphatase PP2A, can be partitioned 
in multiple protein complexes, each of which has differ-
ent cellular roles45,52,53. Such studies could therefore be 
applied to understand the pleiotropic phenotypes that 
are caused by genetic mutations.

Another question that can at least partly be addressed 
by AP–MS is, how do mutations in different genes pro-
duce identical or related phenotypes? In S. cerevisiae, 
in which protein interactions have been mapped by 
AP–MS/MS on a proteome-wide scale54–57, it is now pos-
sible to integrate protein interaction data with genetic 
data that have been obtained from large-scale pheno-
typic profiling experiments (FIG. 4b). In many cases, the 
occurrence of common phenotypes can be explained by 
the fact that genes with similar phenotypes encode pro-
teins that interact with one another to form a functional 

Figure 4 | Mass spectrometry-based interaction proteomics for the analysis of 
mutant phenotypes. a | Analysis of mutant interaction proteomes by quantitative 
affinity purification–mass spectrometry (AP–MS). Complexes containing the 
wild-type or the corresponding mutant bait protein are purified by affinity 
purification. Changes in the stochiometries of the interacting proteins that are 
caused by the mutation can be measured by including known amounts of 
isotope-labelled reference peptides, which correspond to the proteotypic peptides of 
the bait and prey proteins. This is followed by quantitative liquid chromatography–
tandem mass spectrometry (LC-MS/MS) analysis84. b | Protein interaction information 
can be used to explain the occurrence of similar phenotypes. In the hypothetical 
example shown, the genes that encode components of protein complexes (blue 
nodes) show a similar phenotypic pattern when they are mutated. Phen, phenotype. 
Images modified, with permission, from Nature REF. 54  (2006) Macmillan Publishers 
Ltd. All rights reserved.
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Synthetic genetic array 
This has been primarily applied 
to yeast and is a technology  
for the high-throughput 
analysis of genetic interactions. 
Yeast deletion strains are 
crossed with each other to 
systematically generate double 
mutant strains. The resulting 
growth phenotypes are 
determined based on the size 
of the resulting double mutant 
colonies.

protein complex54. It has also been found that synthetic 
lethal interactions are not randomly distributed in the 
yeast interactome but are associated with multiprotein 
complexes58. Although the density of the data on physi-
cal and genetic interactions is currently insufficient for 
network inference analysis in higher eukaryotes, it is 
expected that the integration of systematic AP–MS data 
with phenotypic information will identify similar rela-
tionships in the near future, and  may therefore also help 
to explain phenotypic data in higher organisms.

Integrating proteomic and phenomic data
As discussed in the previous sections, proteomics 
information can be used to improve existing gene 
models, to profile molecular phenotypes at the lev-
els of protein abundance, PTMs and protein–protein 
interactions, and to obtain specific pathway informa-
tion using targeted MS strategies. As for other ‘omics’ 
strategies, the challenge lies in obtaining knowledge 
from the data that are collected. A promising approach 
includes the reconstruction of functional molecu-
lar networks through the integration of high-quality 
information from functional genomics and proteomics  
data (FIG. 5).

Techniques for the successful integration of large 
data sets have been proposed and reviewed recently59,60. 
Few examples exist, however, that show the value 
of integrating genetic information with MS-based 
proteomics data. An interesting example has been 

presented recently in which the integration of genetics  
and proteomics data has been successfully used to dis-
sect the function of the small ubiquitin-related modi-
fier (SUMo) system61. Yeast SUMo pathway mutants 
were subjected to synthetic genetic array (SGA) screen-
ing against a genome-wide collection of viable yeast 
mutants. The resulting genetic interaction data were 
integrated with a proteomics data set, which included 
known SUMo conjugation targets and data from 
AP–MS analyses. The analysis of these integrated 
data led to the development of a molecular network 
model for the SUMo pathway that is linked to >15 
cellular processes. Using a similar approach, another 
study functionally dissected a network of protein com-
plexes that are involved in chromosome biology on 
the basis of epistatic miniarray profiles and systematic  
AP–MS/MS information61.

A few pioneering studies have integrated proteom-
ics and functional genomics data for subsequent net-
work inference analysis with the goal of improving the 
prediction of cancer phenotypes63,64. This approach is 
based on the assumption that the modularity of onco-
genic networks is altered in transformed cells. The 
wrana laboratory recently studied how the modular-
ity of oncogenic pathways is changed in two cohorts 
of patients with breast cancer that have either a good 
or poor prognosis64. The authors used curated protein 
interaction information and large mRNA expression 
data sets to identify protein hubs and their interact-
ing partners that have different coexpression patterns 
in groups of patients with breast cancer with either a 
good or poor prognosis. They identified 256 hub pro-
teins that showed an altered gene expression correla-
tion of their binding partners in the patient group with 
a poor breast cancer prognosis. These results suggest 
that altered network modularity can be used as a prog-
nostic signature for cancers. The increasing coverage of 
human protein–protein interaction data sets by future 
large-scale AP–MS studies will increase the predictive 
performance of such integrative approaches.

Previous studies showed that the successful use of 
MS-based proteomics crucially depends on the proper 
annotation and accessibility of these data through pub-
lic databases. Several initiatives have led to standard-
ized machine-readable formats for the description of 
MS experiments using controlled vocabularies and the 
exchange of MS data65,66. both processed and raw data 
from proteomics experiments can be accessed through 
many proteomics databases (see Further information 
for a list of useful websites). These standardizing efforts 
will continue to allow the efficient integration of MS 
experimental data into existing networks of genotype 
and phenotype databases67. Such efforts to create a 
cyberinfrastructure for complex biological data68 will 
be important in the near future as more phenotypic and 
proteomics data will become available for bridging the 
genotype–phenotype gap.

Conclusion
Phenotypes originate from genetically perturbed molec-
ular networks in mutant cells. Functional genomics and 

Figure 5 | Using proteomic data in network biology.  
A data integration strategy for inference of genetically 
perturbed molecular networks based on proteomics, 
phenomics and functional genomics data. MS, mass 
spectrometry; PTM, posttranslational modification. 
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metabolomics were, and still are, instrumental in the 
ongoing process to understand and model molecular 
networks. However, these approaches fail to take into 
account an essential class of network components — 
proteins. In this Review, we have shown that the progress 
in MS-based proteomics now allows systems-wide 
and hypothesis-driven analysis of mutant proteomes. 
However, this is still a new area of research and there 
are still limitations to addressing the full complexity and 
dynamic nature of cellular proteomes.

New analytical concepts, such as targeted proteomics,  
are being explored to overcome many of the existing 
limitations, and MS instrumentation will continue to 
improve the sensitivity and accuracy of current MS 
measurements. It will be equally important to develop an 
effective computational framework for the integration of 
proteomics data with phenomic and functional genomic 
information to reconstruct molecular networks and how 
they are perturbed in mutant cells — an essential step  
in bridging the genotype–phenotype gap.
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