What we have seen yesterday in TV

perceptive stimulus

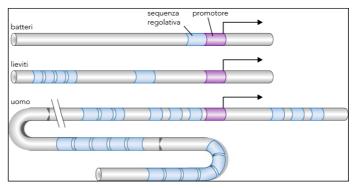
chromatic changes

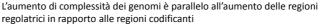
histone modifications nucleosome repositioning histone isoform substitution

... at the single cell level of resolution

Studies with 3C (chromosome conformation capture) have shown:

>interaction between enhancers and promoters when **proximal** or little distance


> medium long-range interaction between enhancers and promoters to direct developmentally regulated **choice** of genes in clusters (e.g. β -globin)


>intra- and **interchromosomal** long-range interactions between a single enhancer and one out of thousand gene promoters in **mutual exclusive** manner (Odorant receptor choice)

>Inter-chromosomal interaction between different genes **induced** after a stimulatory event (e.g. estrogen-induced genes).

TF binding to specific sequences is the first event in gene activation

- Problems:
- >Where ?
- ≻How many TFs ?
- ➤Is DNA binding always relevant to gene activation?

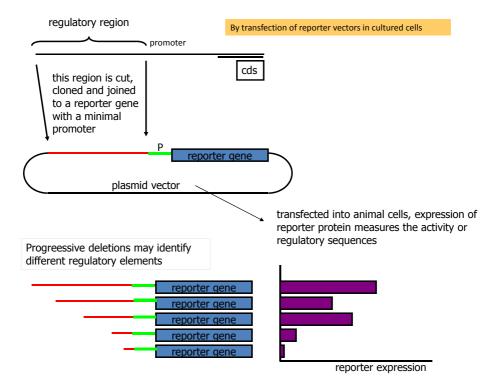
la situazione più semplice è:

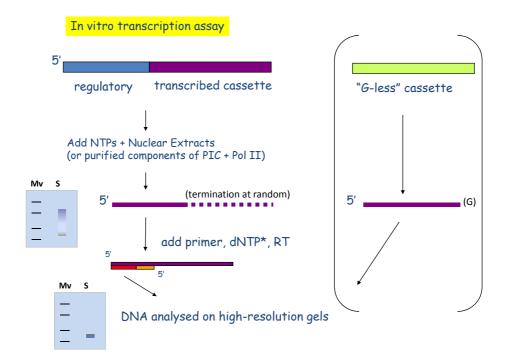
UAS	Р	

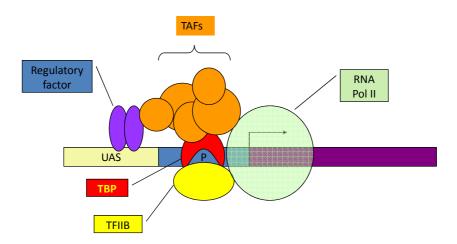
sebbene vi siano diversi tipi di promotore (es. TATA-dep, Inr-dep, CpG, etc) il promotore minimo è:

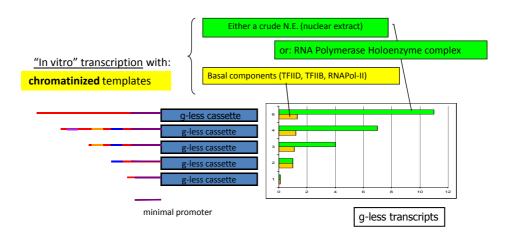
- 1) estremamente inefficiente in vivo
- 2) non regolato

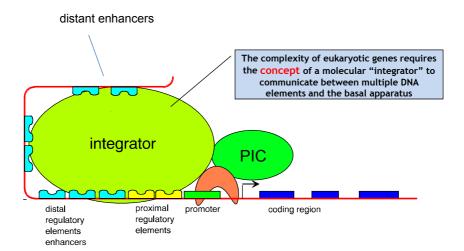
ed è prevalentemente un elemento di posizione

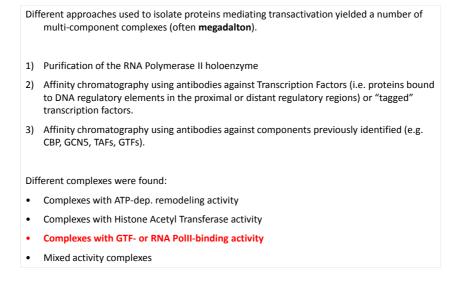

Biochemical definition:

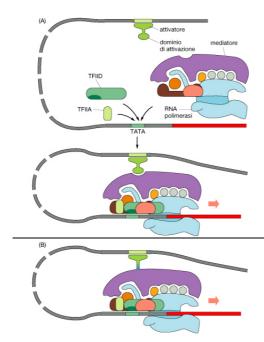

"trans-activation" means activation of transcription by "trans" factor (essentially, proteins that recognize DNA or the gene context):

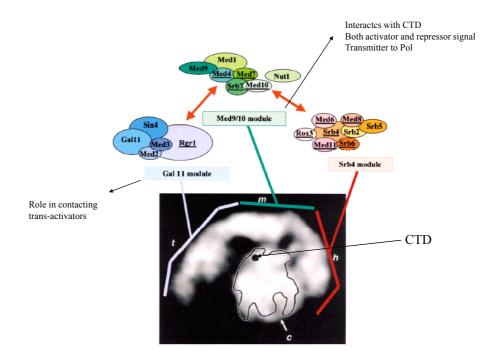

improvement of the efficiency of a basal promoter


Very important how it is defined experimentally:


- 1. "in vivo" transcription with reporter vectors
- 2. "in vitro" transcription with DNA templates







The Mediator, a megadalton complex interacting with TF and PIC components, was isolated ancd characterized in 2004-05.

There are several version of Mediator in the cell nucleus

Subunit a	compositio	ns of medi	ator comp	lexes.	ll co	omplesso	del "Me	ediatore"	,		
Unified subunit designatio		ARC Mediator-A	TRAP/ SMCC Mediator- T/S	PC2 Mediator-P	CRSP Mediator-C	NAT Mediator-N	hMediator Mediator-S	Murine Mediator Mediator-M	S. cerevisiae	C. elegans	s Drosophila
		CBP/p300)								
Med240	DRIP250	ARC250	TRAP240				ND				dTRAP240
Med230	DRIP240	ARC240	TRAP230			p230	ND	p160a	Nut1	Sop-1	dTRAP23
Med220	DRIP205	ARC205		(TRAP220	CRSP200	F	ND	p160b	Gal11	F .	dTRAP22
Med150	DRIP150				CRSP150	p150	ND	Rgr1/p110			dTRAP170
Med130	DRIP130				CRSP130	p140/hSur2				Sur-2	CG3695
Med105		ARC105/ TIG-1									
Med100	DRIP100	ARC100	TRAP100	TRAP100			ND		Sin4		dTRAP100
Med97	DRIP97		TRAP97			p95		Ring3/p96a	Srb4		
Med95	DRIP92	ARC92	TRAP95	TRAP95		p90	ND	p96b	Med1		dTRAP95
			TRAP93					•			
Med78	DRIP77	ARC77	TRAP80	TRAP80	CRSP77		ND	p78			dTRAP80
Med70	DRIP70-2	ARC70			CRSP70	p70	ND	•	Med2		
		ARC42		p37				p55	Pgd1/Hrs1		
Cdk8	(Cdk8)	(Cdk8)	hSrb10	í i i		p56/Cdk8	Cdk8		Srb10		dCdk8
Med36	DRIP36	ARC36		p36	CRSP34	p45	ND	p34	Med4		CG8609
Med34	DRIP34	ARC34	hMed7	hMed7	CRSP33	p37	Med7	Med7/p36	Med7	ceMed7	dMed7
						p36		•	Srb5		
Med33	DRIP33	ARC33	hMed6	(hMed6)		p33	ND	Med6/p32	Med6	ceMed6	CG9473
		ARC32	hTRF	hTRF		-	ND	TRF/p28a	Med8		
Cyclin C			hSrb11			p31/ Cyclin C	Cyclin C		Srb11		
						p30		p28b	Rox3		
						p23		•	Srb2		
			hSoh1	hSoh1		p22					
					2000	p21			Med9/Cse2		
Med17	hSrb7		hSrb7	hSrb7		p17	ND	Srb7/p21	Srb7	ceSrb7	CG17397
Med10	hMed10		hNut2	hNut2		p14	ND		Med10/Nut2	ceMed10	dNut2
		12					82		Med11		
									Srb6		

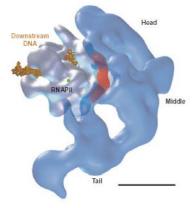


Figure 3. Interaction of Mediator and RNA polymerase II (RNAPII) in the holoenzyme complex. The precise orientation of RNAPII in the holoenzyme complex was

established by 2D cross-correlation analysis between holoenzyme and RNAPII projections. The figure shows a cryoelectron

microscopy reconstruction of polymerase fitted into the extended Mediator structure in the orientation

determined by cross-correlation analysis. Multiple contacts between Mediator and RNAPII are established in the holoenzyme complex, involving mostly the head and middle domains, and distributed around the Rpb3–Rpb11 polymerase subunits (highlighted in red). The small green circle indicates the point where the carboxyterminal

domain of Rpb1 (the largest polymerase subunit), crucial for Mediator polymerase interaction, emanates from the surface of the enzyme. The bacterial homolog of the Rpb3–Rpb11 complex, the a2 homodimer, is involved in transcription regulation in bacteria, suggesting a conservation between prokaryotes and eukaryotes of the RNA polymerase surface involved in regulation. The scale bar represents 100 A°. Different forms of Mediator exist and Mediator conformation is dependent on the kind of **activator** is bound

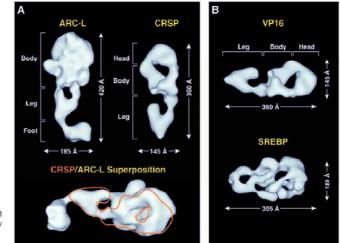
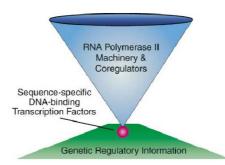
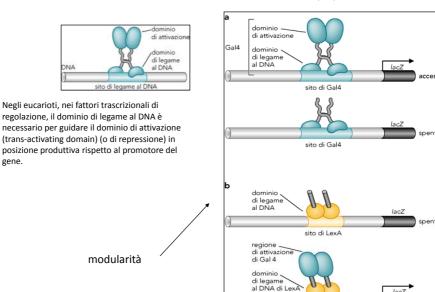
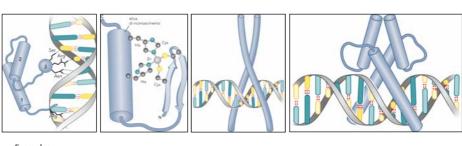


Fig. 2. Conformations of the mammalian mediator complexes. (A) EM composites of the ARC-L and CRSP complexes, which illustrate the size and structural differences between the two. (B) EM composites showing the distinctly different structural conformations adopted by CRSP when isolated via affinity interactions with either the VP16 or SREBP activator. EM composites were generously provided by Dylan Taatjes and Bob Tjian (Naar et al., 2002; Taatjes et al., 2002).

> Regulatory Transcription Factors (DNA binding proteins)


Figure 1. Sequence-Specific DNA Binding Transcription Factors Interpret and Transmit Genetic Regulatory Information

In this diagram, sequence-specific factors are depicted as the apex at the interface of the vast array of genetic regulatory information and the inverted cone of the RNA polymerase II transcriptional machinery and coregulators.

the domain swap experiment

sito di LexA

Examples:

gene.

Hox proteins Antennapedia Matα

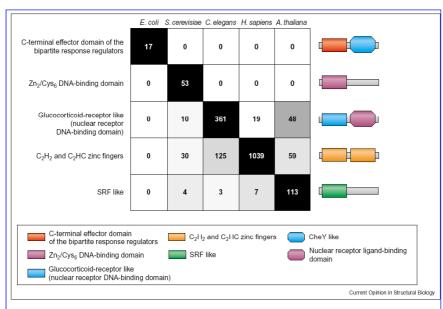
GAL4 Steroid receptors Nuclear receptors GCN4 fos-jun (AP-1) CREB

Myc Myo-D, Neuro-D SREBP

DNA-binding domains (as well as dimerization domains, which are very often closely associated in transcription factors, display quite rigid 3D structures.

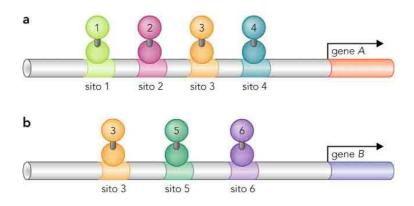
In sharp contrast, transactivating domains have never been resolved by cristallography, i.e. they are flexible and adaptable domains, which most likely assume different conformations, depending on interactions.

Trans-activating domain classification is rather based on aminoacid composition, i.e.:

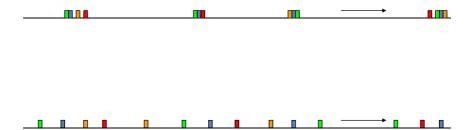

acidic

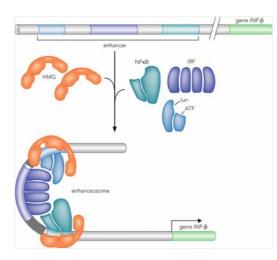
•glutamine-rich

•glutamine/proline rich


hydrophobic

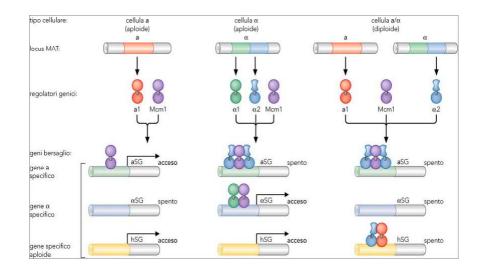
Numbers of DNA-binding transcription factors in five organisms ^a .					
Organism	Number of transcripts	Number of proteins with DNA-binding domains	Percentage of transcripts containing DNA-binding domain		
E. coli	4280	267	6.2		
S. cerevisiae	6357	245	3.9		
C. elegans	31 677	1463	4.6		
H. sapiens	32 036 ^b	2604	8.1		
A. thaliana	28 787	1667	5.7		
^a DNA-binding domain a	ssignments from Pfam and SUPEF	RFAMILY are used to establish the repertoire	of DNA-binding transcription factors		




Lineage-specific expansion of DNA-binding domain families. Examples of DNA-binding domain families of transcription factors that are prevalent in one of the five genomes, but are rare in the others. The genomic occurrence of each family is provided in the table and we depict their most common domain architectures alongside. SRF, serum response factor. Il controllo trascrizionale viene realizzato con un numero limitato (ancorchè assai grande) di fattori trascrizionali leganti il DNA.

Ogni regione di controllo è formata dalla giustapposizione di diversi elementi in un ordine spaziale specifico.

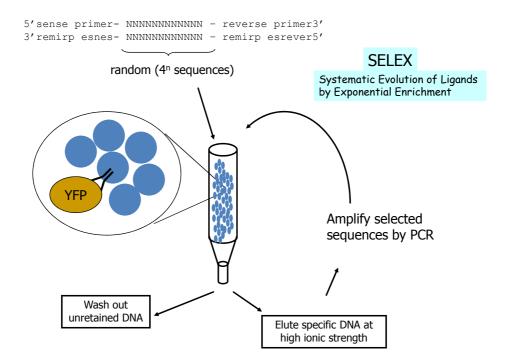
La cooperazione e composizionalità delle sequenze regolatrici è suggerita anche dal fatto che gli elementi *cis* sono distibuiti in *clusters* e non in modo uniforme.

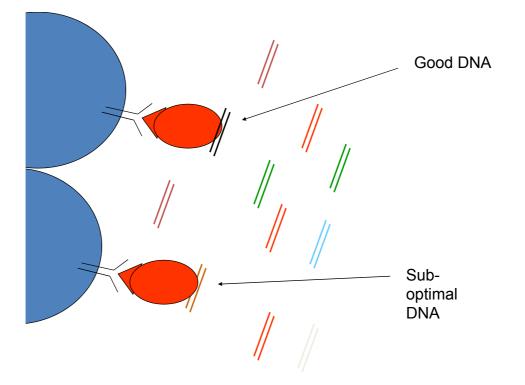


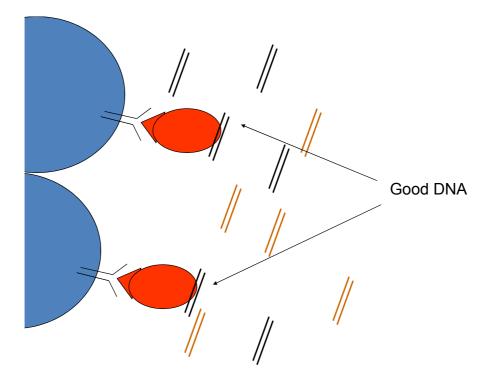
The INF- β "enhanceosome"

In certain cases, the binding of multiple different proteins to adjacent sites in an enhancer is required to make it working. HMG are DNA-binding proteins with no transactivating domain, but display "architectural" functions, e.g. bending the DNA

As clearly esemplified in the case of the MAT locus-encoded transcription factors a1, α 1, α 2, the activatory or repressory result is given by the **combination** and **geometry** of interaction between different factors, on composed DNA elements.


Problems in defining the "response element"

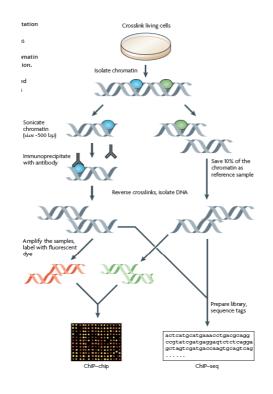

Bioinformatic analysis of binding sites is possible, but does not indicate the "in vivo" situation, or only very partially

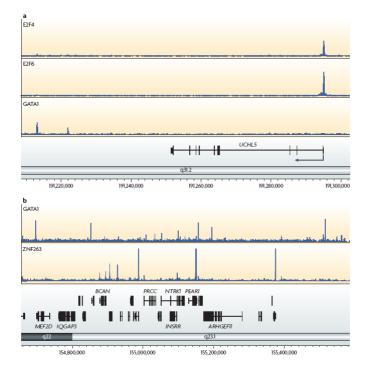

When a DNA binding protein is under study, the sequence of DNA it interacts with can be selected using a process called:

SELEX

Systematic Evolution of Ligands by Exponential Enrichment

Insights from genomic profiling of transcription factors


Peggy J. Farnham

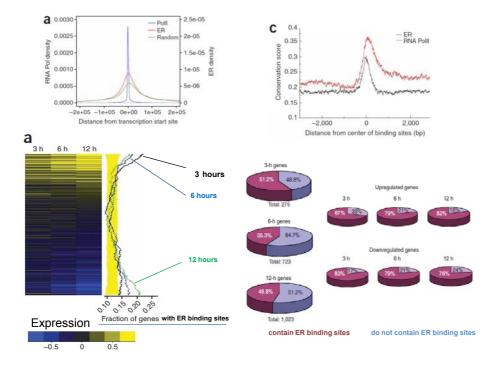

Abstract | A crucial question in the field of gene regulation is whether the location at which a transcription factor binds influences its effectiveness or the mechanism by which it regulates transcription. Comprehensive transcription factor binding maps are needed to address these issues, and genome-wide mapping is now possible thanks to the technological advances of ChIP-chip and ChIP-seq. This Review discusses how recent genomic profiling of transcription factors gives insight into how binding specificity is achieved and what features of chromatin influence the ability of transcription factors to interact with the genome. It also suggests future experiments that may further our understanding of the causes and consequences of transcription factor-genome interactions.

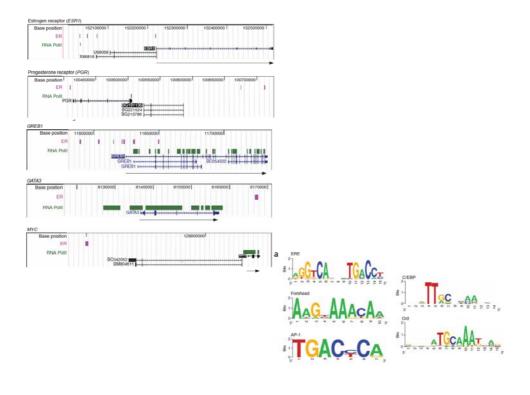
NATURE REVIEWS GENETICS

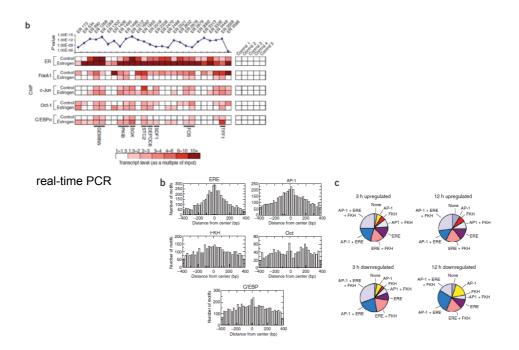
VOLUME 10 SEPTEMBER 2009 605

Article: this article is only suggeted, not mandatory

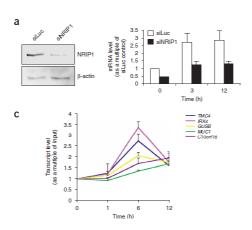
Genome-wide analysis of estrogen receptor binding sites

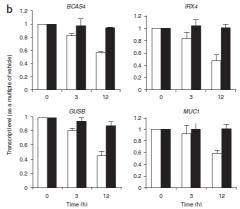

Jason S Carroll¹, Clifford A Meyer^{2,3}, Jun Song^{2,3}, Wei Li^{2,3}, Timothy R Geistlinger¹, Jérôme Eeckhoute¹, Alexander S Brodsky⁴, Erika Krasnickas Keeton¹, Kirsten C Fertuck¹, Giles F Hall⁵, Qianben Wang¹, Stefan Bekiranov^{6,8}, Victor Sementchenko⁶, Edward A Fox⁵, Pamela A Silver^{5,7}, Thomas R Gingeras⁶, X Shirley Liu^{2,3} & Myles Brown¹


The estrogen receptor is the master transcriptional regulator of breast cancer phenotype and the archetype of a molecular therapeutic target. We mapped all estrogen receptor and RNA polymerase II binding sites on a genome-wide scale, identifying the authentic *cis* binding sites and target genes, in breast cancer cells. Combining this unique resource with gene expression data demonstrates distinct temporal mechanisms of estrogen-mediated gene regulation, particularly in the case of estrogen-suppressed genes. Furthermore, this resource has allowed the identification of *cis*-regulatory sites in previously unexplored regions of the genome and the cooperating transcription factors underlying estrogen signaling in breast cancer.


NATURE GENETICS VOLUME 38 NUMBER 11 NOVEMBER 2006

A seminar by Jay Carroll is planned in Torino, February 5.


1289



A clear bias toward AP1 in late downregulated Corepressors induced by E2, known to bind eityher ER or AP-1: NRIP1 Functional analysis of NRIP1:

